亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of optimal unsignalized intersection management for continual streams of randomly arriving robots. This problem involves repeatedly solving different instances of a mixed integer program, for which the computation time using a naive optimization algorithm scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for real-time implementation. In this paper, we propose a solution framework that combines learning and sequential optimization. In particular, we propose an algorithm for learning a shared policy that given the traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories of the robots sequentially according to that crossing order. This approach inherently guarantees safety at all times. We validate the performance of this approach using extensive simulations. Our approach, on average, significantly outperforms the heuristics from the literature. We also show through simulations that the computation time for our approach scales linearly with the number of robots. We further implement the learnt policies on physical robots with a few modifications to the solution framework to address real-world challenges and establish its real-time implementability.

相關內容

Deep Learning has already been successfully applied to analyze industrial sensor data in a variety of relevant use cases. However, the opaque nature of many well-performing methods poses a major obstacle for real-world deployment. Explainable AI (XAI) and especially feature attribution techniques promise to enable insights about how such models form their decision. But the plain application of such methods often fails to provide truly informative and problem-specific insights to domain experts. In this work, we focus on the specific task of detecting faults in rolling element bearings from vibration signals. We propose a novel and domain-specific feature attribution framework that allows us to evaluate how well the underlying logic of a model corresponds with expert reasoning. Utilizing the framework we are able to validate the trustworthiness and to successfully anticipate the generalization ability of different well-performing deep learning models. Our methodology demonstrates how signal processing tools can effectively be used to enhance Explainable AI techniques and acts as a template for similar problems.

Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.

Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques. In this paper, we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general Least Squared Estimators on sieve, without imposing specific assumptions on the function's form. Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression. We also delve into the conditions that allow for achieving the best possible square root convergence rate among all methods. Numerical experiments are conducted to support our statements.

We consider the problem of designing sample efficient learning algorithms for infinite horizon discounted reward Markov Decision Process. Specifically, we propose the Accelerated Natural Policy Gradient (ANPG) algorithm that utilizes an accelerated stochastic gradient descent process to obtain the natural policy gradient. ANPG achieves $\mathcal{O}({\epsilon^{-2}})$ sample complexity and $\mathcal{O}(\epsilon^{-1})$ iteration complexity with general parameterization where $\epsilon$ defines the optimality error. This improves the state-of-the-art sample complexity by a $\log(\frac{1}{\epsilon})$ factor. ANPG is a first-order algorithm and unlike some existing literature, does not require the unverifiable assumption that the variance of importance sampling (IS) weights is upper bounded. In the class of Hessian-free and IS-free algorithms, ANPG beats the best-known sample complexity by a factor of $\mathcal{O}(\epsilon^{-\frac{1}{2}})$ and simultaneously matches their state-of-the-art iteration complexity.

Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features. However, many neurons exhibit $\textit{mixed selectivity}$, i.e., they represent multiple unrelated features. A recent hypothesis proposes that features in deep networks may be represented in $\textit{superposition}$, i.e., on non-orthogonal axes by multiple neurons, since the number of possible interpretable features in natural data is generally larger than the number of neurons in a given network. Accordingly, we should be able to find meaningful directions in activation space that are not aligned with individual neurons. Here, we propose (1) an automated method for quantifying visual interpretability that is validated against a large database of human psychophysics judgments of neuron interpretability, and (2) an approach for finding meaningful directions in network activation space. We leverage these methods to discover directions in convolutional neural networks that are more intuitively meaningful than individual neurons, as we confirm and investigate in a series of analyses. Moreover, we apply the same method to three recent datasets of visual neural responses in the brain and find that our conclusions largely transfer to real neural data, suggesting that superposition might be deployed by the brain. This also provides a link with disentanglement and raises fundamental questions about robust, efficient and factorized representations in both artificial and biological neural systems.

Learning neural implicit representations has achieved remarkable performance in 3D reconstruction from multi-view images. Current methods use volume rendering to render implicit representations into either RGB or depth images that are supervised by multi-view ground truth. However, rendering a view each time suffers from incomplete depth at holes and unawareness of occluded structures from the depth supervision, which severely affects the accuracy of geometry inference via volume rendering. To resolve this issue, we propose to learn neural implicit representations from multi-view RGBD images through volume rendering with an attentive depth fusion prior. Our prior allows neural networks to perceive coarse 3D structures from the Truncated Signed Distance Function (TSDF) fused from all depth images available for rendering. The TSDF enables accessing the missing depth at holes on one depth image and the occluded parts that are invisible from the current view. By introducing a novel attention mechanism, we allow neural networks to directly use the depth fusion prior with the inferred occupancy as the learned implicit function. Our attention mechanism works with either a one-time fused TSDF that represents a whole scene or an incrementally fused TSDF that represents a partial scene in the context of Simultaneous Localization and Mapping (SLAM). Our evaluations on widely used benchmarks including synthetic and real-world scans show our superiority over the latest neural implicit methods. Project page: //machineperceptionlab.github.io/Attentive_DF_Prior/

Deep generative models have shown tremendous success in data density estimation and data generation from finite samples. While these models have shown impressive performance by learning correlations among features in the data, some fundamental shortcomings are their lack of explainability, the tendency to induce spurious correlations, and poor out-of-distribution extrapolation. In an effort to remedy such challenges, one can incorporate the theory of causality in deep generative modeling. Structural causal models (SCMs) describe data-generating processes and model complex causal relationships and mechanisms among variables in a system. Thus, SCMs can naturally be combined with deep generative models. Causal models offer several beneficial properties to deep generative models, such as distribution shift robustness, fairness, and interoperability. We provide a technical survey on causal generative modeling categorized into causal representation learning and controllable counterfactual generation methods. We focus on fundamental theory, formulations, drawbacks, datasets, metrics, and applications of causal generative models in fairness, privacy, out-of-distribution generalization, and precision medicine. We also discuss open problems and fruitful research directions for future work in the field.

Many modern datasets, such as those in ecology and geology, are composed of samples with spatial structure and dependence. With such data violating the usual independent and identically distributed (IID) assumption in machine learning and classical statistics, it is unclear a priori how one should measure the performance and generalization of models. Several authors have empirically investigated cross-validation (CV) methods in this setting, reaching mixed conclusions. We provide a class of unbiased estimation methods for general quadratic errors, correlated Gaussian response, and arbitrary prediction function $g$, for a noise-elevated version of the error. Our approach generalizes the coupled bootstrap (CB) from the normal means problem to general normal data, allowing correlation both within and between the training and test sets. CB relies on creating bootstrap samples that are intelligently decoupled, in the sense of being statistically independent. Specifically, the key to CB lies in generating two independent "views" of our data and using them as stand-ins for the usual independent training and test samples. Beginning with Mallows' $C_p$, we generalize the estimator to develop our generalized $C_p$ estimators (GC). We show at under only a moment condition on $g$, this noise-elevated error estimate converges smoothly to the noiseless error estimate. We show that when Stein's unbiased risk estimator (SURE) applies, GC converges to SURE as in the normal means problem. Further, we use these same tools to analyze CV and provide some theoretical analysis to help understand when CV will provide good estimates of error. Simulations align with our theoretical results, demonstrating the effectiveness of GC and illustrating the behavior of CV methods. Lastly, we apply our estimator to a model selection task on geothermal data in Nevada.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司