Spatially misaligned data can be fused by using a Bayesian melding model that assumes that underlying all observations there is a spatially continuous Gaussian random field process. This model can be used, for example, to predict air pollution levels by combining point data from monitoring stations and areal data from satellite imagery. However, if the data presents preferential sampling, that is, if the observed point locations are not independent of the underlying spatial process, the inference obtained from models that ignore such a dependence structure might not be valid. In this paper, we present a Bayesian spatial model for the fusion of point and areal data that takes into account preferential sampling. The model combines the Bayesian melding specification and a model for the stochastically dependent sampling and underlying spatial processes. Fast Bayesian inference is performed using the integrated nested Laplace approximation (INLA) and the stochastic partial differential equation (SPDE) approaches. The performance of the model is assessed using simulated data in a range of scenarios and sampling strategies that can appear in real settings. The model is also applied to predict air pollution in the USA.
Implicit solvers for atmospheric models are often accelerated via the solution of a preconditioned system. For block preconditioners this typically involves the factorisation of the (approximate) Jacobian for the coupled system into a Helmholtz equation for some function of the pressure. Here we present a preconditioner for the compressible Euler equations with a flux form representation of the potential temperature on the Lorenz grid using mixed finite elements. This formulation allows for spatial discretisations that conserve both energy and potential temperature variance. By introducing the dry thermodynamic entropy as an auxiliary variable for the solution of the algebraic system, the resulting preconditioner is shown to have a similar block structure to an existing preconditioner for the material form transport of potential temperature on the Charney-Phillips grid, and to be more efficient and stable than either this or a previous Helmholtz preconditioner for the flux form transport of density weighted potential temperature on the Lorenz grid for a one dimensional thermal bubble configuration. The new preconditioner is further verified against standard two dimensional test cases in a vertical slice geometry.
In this study, we introduce Generative Manufacturing Systems (GMS) as a novel approach to effectively manage and coordinate autonomous manufacturing assets, thereby enhancing their responsiveness and flexibility to address a wide array of production objectives and human preferences. Deviating from traditional explicit modeling, GMS employs generative AI, including diffusion models and ChatGPT, for implicit learning from envisioned futures, marking a shift from a model-optimum to a training-sampling decision-making. Through the integration of generative AI, GMS enables complex decision-making through interactive dialogue with humans, allowing manufacturing assets to generate multiple high-quality global decisions that can be iteratively refined based on human feedback. Empirical findings showcase GMS's substantial improvement in system resilience and responsiveness to uncertainties, with decision times reduced from seconds to milliseconds. The study underscores the inherent creativity and diversity in the generated solutions, facilitating human-centric decision-making through seamless and continuous human-machine interactions.
Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13$^\text{th}$ International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"
Coherent Ising Machine (CIM) is a network of optical parametric oscillators that solves combinatorial optimization problems by finding the ground state of an Ising Hamiltonian. As a practical application of CIM, Aonishi et al. proposed a quantum-classical hybrid system to solve optimization problems of L0-regularization-based compressed sensing (L0RBCS). Gunathilaka et al. has further enhanced the accuracy of the system. However, the computationally expensive CIM's stochastic differential equations (SDEs) limit the use of digital hardware implementations. As an alternative to Gunathilaka et al.'s CIM SDEs used previously, we propose using the mean-field CIM (MF-CIM) model, which is a physics-inspired heuristic solver without quantum noise. MF-CIM surmounts the high computational cost due to the simple nature of the differential equations (DEs). Furthermore, our results indicate that the proposed model has similar performance to physically accurate SDEs in both artificial and magnetic resonance imaging data, paving the way for implementing CIM-based L0RBCS on digital hardware such as Field Programmable Gate Arrays (FPGAs).
We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.
Contraction coefficients give a quantitative strengthening of the data processing inequality. As such, they have many natural applications whenever closer analysis of information processing is required. However, it is often challenging to calculate these coefficients. As a remedy we discuss a quantum generalization of Doeblin coefficients. These give an efficiently computable upper bound on many contraction coefficients. We prove several properties and discuss generalizations and applications. In particular, we give additional stronger bounds for PPT channels and introduce reverse Doeblin coefficients that bound certain expansion coefficients.
Reachability and other path-based measures on temporal graphs can be used to understand spread of infection, information, and people in modelled systems. Due to delays and errors in reporting, temporal graphs derived from data are unlikely to perfectly reflect reality, especially with respect to the precise times at which edges appear. To reflect this uncertainty, we consider a model in which some number $\zeta$ of edge appearances may have their timestamps perturbed by $\pm\delta$ for some $\delta$. Within this model, we investigate temporal reachability and consider the problem of determining the maximum number of vertices any vertex can reach under these perturbations. We show that this problem is intractable in general but is efficiently solvable when $\zeta$ is sufficiently large. We also give algorithms which solve this problem in several restricted settings. We complement this with some contrasting results concerning the complexity of related temporal eccentricity problems under perturbation.
growclusters for R is a package that estimates a partition structure for multivariate data. It does this by implementing a hierarchical version of k-means clustering that accounts for possible known dependencies in a collection of datasets, where each set draws its cluster means from a single, global partition. Each component data set in the collection corresponds to a known group in the data. This paper focuses on R Shiny applications that implement the clustering methodology and simulate data sets with known group structures. These Shiny applications implement novel ways of visualizing the results of the clustering. These visualizations include scatterplots of individual data sets in the context of the entire collection and cluster distributions versus component (or sub-domain) datasets. Data obtained from a collection of 2000-2013 articles from the Bureau of Labor Statistics (BLS) Monthly Labor Review (MLR) will be used to illustrate the R-Shiny applications. Here, the known grouping in the collection is the year of publication.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.