亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ambiguous appearance, tiny scale, and fine-grained classes of objects in remote sensing imagery inevitably lead to the noisy annotations in category labels of detection dataset. However, the effects and treatments of the label noises are underexplored in modern oriented remote sensing object detectors. To address this issue, we propose a robust oriented remote sensing object detection method through dynamic loss decay (DLD) mechanism, inspired by the two phase ``early-learning'' and ``memorization'' learning dynamics of deep neural networks on clean and noisy samples. To be specific, we first observe the end point of early learning phase termed as EL, after which the models begin to memorize the false labels that significantly degrade the detection accuracy. Secondly, under the guidance of the training indicator, the losses of each sample are ranked in descending order, and we adaptively decay the losses of the top K largest ones (bad samples) in the following epochs. Because these large losses are of high confidence to be calculated with wrong labels. Experimental results show that the method achieves excellent noise resistance performance tested on multiple public datasets such as HRSC2016 and DOTA-v1.0/v2.0 with synthetic category label noise. Our solution also has won the 2st place in the "fine-grained object detection based on sub-meter remote sensing imagery" track with noisy labels of 2023 National Big Data and Computing Intelligence Challenge.

相關內容

Change detection aims to identify remote sense object changes by analyzing data between bitemporal image pairs. Due to the large temporal and spatial span of data collection in change detection image pairs, there are often a significant amount of task-specific and task-agnostic noise. Previous effort has focused excessively on denoising, with this goes a great deal of loss of fine-grained information. In this paper, we revisit the importance of fine-grained features in change detection and propose a series of operations for fine-grained information compensation and noise decoupling (FINO). First, the context is utilized to compensate for the fine-grained information in the feature space. Next, a shape-aware and a brightness-aware module are designed to improve the capacity for representation learning. The shape-aware module guides the backbone for more precise shape estimation, guiding the backbone network in extracting object shape features. The brightness-aware module learns a overall brightness estimation to improve the model's robustness to task-agnostic noise. Finally, a task-specific noise decoupling structure is designed as a way to improve the model's ability to separate noise interference from feature similarity. With these training schemes, our proposed method achieves new state-of-the-art (SOTA) results in multiple change detection benchmarks. The code will be made available.

Medical image segmentation allows quantifying target structure size and shape, aiding in disease diagnosis, prognosis, surgery planning, and comprehension.Building upon recent advancements in foundation Vision-Language Models (VLMs) from natural image-text pairs, several studies have proposed adapting them to Vision-Language Segmentation Models (VLSMs) that allow using language text as an additional input to segmentation models. Introducing auxiliary information via text with human-in-the-loop prompting during inference opens up unique opportunities, such as open vocabulary segmentation and potentially more robust segmentation models against out-of-distribution data. Although transfer learning from natural to medical images has been explored for image-only segmentation models, the joint representation of vision-language in segmentation problems remains underexplored. This study introduces the first systematic study on transferring VLSMs to 2D medical images, using carefully curated $11$ datasets encompassing diverse modalities and insightful language prompts and experiments. Our findings demonstrate that although VLSMs show competitive performance compared to image-only models for segmentation after finetuning in limited medical image datasets, not all VLSMs utilize the additional information from language prompts, with image features playing a dominant role. While VLSMs exhibit enhanced performance in handling pooled datasets with diverse modalities and show potential robustness to domain shifts compared to conventional segmentation models, our results suggest that novel approaches are required to enable VLSMs to leverage the various auxiliary information available through language prompts. The code and datasets are available at //github.com/naamiinepal/medvlsm.

Ultrasonography has revolutionized non-invasive diagnostic methodologies, significantly enhancing patient outcomes across various medical domains. Despite its advancements, integrating ultrasound technology with robotic systems for automated scans presents challenges, including limited command understanding and dynamic execution capabilities. To address these challenges, this paper introduces a novel Ultrasound Embodied Intelligence system that synergistically combines ultrasound robots with large language models (LLMs) and domain-specific knowledge augmentation, enhancing ultrasound robots' intelligence and operational efficiency. Our approach employs a dual strategy: firstly, integrating LLMs with ultrasound robots to interpret doctors' verbal instructions into precise motion planning through a comprehensive understanding of ultrasound domain knowledge, including APIs and operational manuals; secondly, incorporating a dynamic execution mechanism, allowing for real-time adjustments to scanning plans based on patient movements or procedural errors. We demonstrate the effectiveness of our system through extensive experiments, including ablation studies and comparisons across various models, showcasing significant improvements in executing medical procedures from verbal commands. Our findings suggest that the proposed system improves the efficiency and quality of ultrasound scans and paves the way for further advancements in autonomous medical scanning technologies, with the potential to transform non-invasive diagnostics and streamline medical workflows.

The structure of linear dependence relations between coded symbols of a linear code, irrespective of specific coefficients involved, is referred to as the {\em topology} of the code. The specification of coefficients is referred to as an {\em instantiation} of the topology. In this paper, we propose a new block circulant topology $T_{[\mu,\lambda,\omega]}(\rho)$ parameterized by integers $\rho \geq 2$, $\omega \geq 1$, $\lambda \geq 2$, and $\mu$ a multiple of $\lambda$. In this topology, the code has $\mu$ local codes with $\rho$ parity-check (p-c) constraints and a total of $\mu\rho$ p-c equations fully define the code. Next, we construct a class of block circulant (BC) codes ${\cal C}_{\text{BC}}[\mu,\lambda,\omega,\rho]$ with blocklength $n=\mu(\rho+\omega)$, dimension $k=\mu\omega$ that instantiate $T_{[\mu,\lambda,\omega]}(\rho)$. Every local code of ${\cal C}_{\text{BC}}[\mu,\lambda,\omega,\rho]$ is a $[\rho+\lambda\omega,\lambda\omega,\rho+1]$ generalized Reed-Solomon (RS) code. The overlap between supports of local codes helps to enhance the minimum distance $\rho+1$ to $2\rho+1$, without compromising much on the rate. We provide an efficient, parallelizable decoding algorithm to correct $2\rho$ erasures when $\lambda=2$. Finally, we illustrate that the BC codes serve as a viable alternative to 2D RS codes in protocols designed to tackle blockchain networks' data availability (DA) problem. In these protocols, every node in a network of light nodes randomly queries symbols from a codeword stored in full nodes and verifies them using a cryptographic commitment scheme. For the same performance in tackling the DA problem, the BC code requires querying a smaller number of symbols than a comparable 2D RS code for a fixed high rate. Furthermore, the number of local codes in the BC code is typically smaller, yielding a reduction in the complexity of realizing the commitment scheme.

Interactive image segmentation enables users to interact minimally with a machine, facilitating the gradual refinement of the segmentation mask for a target of interest. Previous studies have demonstrated impressive performance in extracting a single target mask through interactive segmentation. However, the information cues of previously interacted objects have been overlooked in the existing methods, which can be further explored to speed up interactive segmentation for multiple targets in the same category. To this end, we introduce novel interactive segmentation frameworks for both a single object and multiple objects in the same category. Specifically, our model leverages transformer backbones to extract interaction-focused visual features from the image and the interactions to obtain a satisfactory mask of a target as an exemplar. For multiple objects, we propose an exemplar-informed module to enhance the learning of similarities among the objects of the target category. To combine attended features from different modules, we incorporate cross-attention blocks followed by a feature fusion module. Experiments conducted on mainstream benchmarks demonstrate that our models achieve superior performance compared to previous methods. Particularly, our model reduces users' labor by around 15\%, requiring two fewer clicks to achieve target IoUs 85\% and 90\%. The results highlight our models' potential as a flexible and practical annotation tool. The source code will be released after publication.

Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司