We consider state and parameter estimation for compartmental models having both time-varying and time-invariant parameters. Though the described Bayesian computational framework is general, we look at a specific application to the susceptible-infectious-removed (SIR) model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations. The SIR model consists of three states, namely, the three compartments, and two parameters which control the coupling among the states. The deterministic SIR model with time-invariant parameters has shown to be overly simplistic for modelling the complex long-term dynamics of diseases transmission. Recognizing that certain model parameters will naturally vary in time due to seasonal trends, non-pharmaceutical interventions, and other random effects, the estimation procedure must systematically permit these time-varying effects to be captured, without unduly introducing artificial dynamics into the system. To this end, we leverage the robustness of the Markov Chain Monte Carlo (MCMC) algorithm for the estimation of time-invariant parameters alongside nonlinear filters for the joint estimation of the system state and time-varying parameters. We demonstrate performance of the framework by first considering a series of examples using synthetic data, followed by an exposition on public health data collected in the province of Ontario.
Advances in large language models (LLMs) have driven an explosion of interest about their societal impacts. Much of the discourse around how they will impact social equity has been cautionary or negative, focusing on questions like "how might LLMs be biased and how would we mitigate those biases?" This is a vital discussion: the ways in which AI generally, and LLMs specifically, can entrench biases have been well-documented. But equally vital, and much less discussed, is the more opportunity-focused counterpoint: "what promising applications do LLMs enable that could promote equity?" If LLMs are to enable a more equitable world, it is not enough just to play defense against their biases and failure modes. We must also go on offense, applying them positively to equity-enhancing use cases to increase opportunities for underserved groups and reduce societal discrimination. There are many choices which determine the impact of AI, and a fundamental choice very early in the pipeline is the problems we choose to apply it to. If we focus only later in the pipeline -- making LLMs marginally more fair as they facilitate use cases which intrinsically entrench power -- we will miss an important opportunity to guide them to equitable impacts. Here, we highlight the emerging potential of LLMs to promote equity by presenting four newly possible, promising research directions, while keeping risks and cautionary points in clear view.
Dependence is undoubtedly a central concept in statistics. Though, it proves difficult to locate in the literature a formal definition which goes beyond the self-evident 'dependence = non-independence'. This absence has allowed the term 'dependence' and its declination to be used vaguely and indiscriminately for qualifying a variety of disparate notions, leading to numerous incongruities. For example, the classical Pearson's, Spearman's or Kendall's correlations are widely regarded as 'dependence measures' of major interest, in spite of returning 0 in some cases of deterministic relationships between the variables at play, evidently not measuring dependence at all. Arguing that research on such a fundamental topic would benefit from a slightly more rigid framework, this paper suggests a general definition of the dependence between two random variables defined on the same probability space. Natural enough for aligning with intuition, that definition is still sufficiently precise for allowing unequivocal identification of a 'universal' representation of the dependence structure of any bivariate distribution. Links between this representation and familiar concepts are highlighted, and ultimately, the idea of a dependence measure based on that universal representation is explored and shown to satisfy Renyi's postulates.
We provide a non-unit disk framework to solve combinatorial optimization problems such as Maximum Cut (Max-Cut) and Maximum Independent Set (MIS) on a Rydberg quantum annealer. Our setup consists of a many-body interacting Rydberg system where locally controllable light shifts are applied to individual qubits in order to map the graph problem onto the Ising spin model. Exploiting the flexibility that optical tweezers offer in terms of spatial arrangement, our numerical simulations implement the local-detuning protocol while globally driving the Rydberg annealer to the desired many-body ground state, which is also the solution to the optimization problem. Using optimal control methods, these solutions are obtained for prototype graphs with varying sizes at time scales well within the system lifetime and with approximation ratios close to one. The non-blockade approach facilitates the encoding of graph problems with specific topologies that can be realized in two-dimensional Rydberg configurations and is applicable to both unweighted as well as weighted graphs. A comparative analysis with fast simulated annealing is provided which highlights the advantages of our scheme in terms of system size, hardness of the graph, and the number of iterations required to converge to the solution.
Forecast reconciliation is the post-forecasting process aimed to revise a set of incoherent base forecasts into coherent forecasts in line with given data structures. Most of the point and probabilistic regression-based forecast reconciliation results ground on the so called "structural representation" and on the related unconstrained generalized least squares reconciliation formula. However, the structural representation naturally applies to genuine hierarchical/grouped time series, where the top- and bottom-level variables are uniquely identified. When a general linearly constrained multiple time series is considered, the forecast reconciliation is naturally expressed according to a projection approach. While it is well known that the classic structural reconciliation formula is equivalent to its projection approach counterpart, so far it is not completely understood if and how a structural-like reconciliation formula may be derived for a general linearly constrained multiple time series. Such an expression would permit to extend reconciliation definitions, theorems and results in a straightforward manner. In this paper, we show that for general linearly constrained multiple time series it is possible to express the reconciliation formula according to a "structural-like" approach that keeps distinct free and constrained, instead of bottom and upper (aggregated), variables, establish the probabilistic forecast reconciliation framework, and apply these findings to obtain fully reconciled point and probabilistic forecasts for the aggregates of the Australian GDP from income and expenditure sides, and for the European Area GDP disaggregated by income, expenditure and output sides and by 19 countries.
This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.
As a crossover frontier of physics and mechanics, quantum computing is showing its great potential in computational mechanics. However, quantum hardware noise remains a critical barrier to achieving accurate simulation results due to the limitation of the current hardware level. In this paper, we integrate error-mitigated quantum computing in data-driven computational mechanics, where the zero-noise extrapolation (ZNE) technique is employed to improve the accuracy of quantum computing. Numerical examples including multiscale simulation of a composite L-shaped beam are conducted with the quantum computer simulator Qpanda, and the results validate the effectiveness of the proposed method. We believe this work presents a promising step towards using the power of quantum computing in computational mechanics.
Partitioned neural network functions are used to approximate the solution of partial differential equations. The problem domain is partitioned into non-overlapping subdomains and the partitioned neural network functions are defined on the given non-overlapping subdomains. Each neural network function then approximates the solution in each subdomain. To obtain the convergent neural network solution, certain continuity conditions on the partitioned neural network functions across the subdomain interface need to be included in the loss function, that is used to train the parameters in the neural network functions. In our work, by introducing suitable interface values, the loss function is reformulated into a sum of localized loss functions and each localized loss function is used to train the corresponding local neural network parameters. In addition, to accelerate the neural network solution convergence, the localized loss function is enriched with an augmented Lagrangian term, where the interface condition and the boundary condition are enforced as constraints on the local solutions by using Lagrange multipliers. The local neural network parameters and Lagrange multipliers are then found by optimizing the localized loss function. To take the advantage of the localized loss function for the parallel computation, an iterative algorithm is also proposed. For the proposed algorithms, their training performance and convergence are numerically studied for various test examples.
Conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence, because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called "computational random-access memory (CRAM)" has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there lacks an experimental demonstration and study of CRAM to evaluate its computation accuracy, which is a realistic and application-critical metrics for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations as well as 2-, 3-, and 5-input logic operations are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of modeling has been developed to characterize the accuracy of CRAM computation. Further analysis of scalar addition, multiplication, and matrix multiplication shows promising results. These results are then applied to a complete application: a neural network based handwritten digit classifier, as an example to show the connection between the application performance and further MTJ development. The classifier achieved almost-perfect classification accuracy, with reasonable projections of future MTJ development. With the confirmation of MTJ-based CRAM's accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.