亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose polar encoding, a representation of categorical and numerical $[0,1]$-valued attributes with missing values to be used in a classification context. We argue that this is a good baseline approach, because it can be used with any classification algorithm, preserves missingness information, is very simple to apply and offers good performance. In particular, unlike the existing missing-indicator approach, it does not require imputation, ensures that missing values are equidistant from non-missing values, and lets decision tree algorithms choose how to split missing values, thereby providing a practical realisation of the "missingness incorporated in attributes" (MIA) proposal. Furthermore, we show that categorical and $[0,1]$-valued attributes can be viewed as special cases of a single attribute type, corresponding to the classical concept of barycentric coordinates, and that this offers a natural interpretation of polar encoding as a fuzzified form of one-hot encoding. With an experiment based on twenty real-life datasets with missing values, we show that, in terms of the resulting classification performance, polar encoding performs better than the state-of-the-art strategies "multiple imputation by chained equations" (MICE) and "multiple imputation with denoising autoencoders" (MIDAS) and -- depending on the classifier -- about as well or better than mean/mode imputation with missing-indicators.

相關內容

Federated Learning (FL) exhibits privacy vulnerabilities under gradient inversion attacks (GIAs), which can extract private information from individual gradients. To enhance privacy, FL incorporates Secure Aggregation (SA) to prevent the server from obtaining individual gradients, thus effectively resisting GIAs. In this paper, we propose a stealthy label inference attack to bypass SA and recover individual clients' private labels. Specifically, we conduct a theoretical analysis of label inference from the aggregated gradients that are exclusively obtained after implementing SA. The analysis results reveal that the inputs (embeddings) and outputs (logits) of the final fully connected layer (FCL) contribute to gradient disaggregation and label restoration. To preset the embeddings and logits of FCL, we craft a fishing model by solely modifying the parameters of a single batch normalization (BN) layer in the original model. Distributing client-specific fishing models, the server can derive the individual gradients regarding the bias of FCL by resolving a linear system with expected embeddings and the aggregated gradients as coefficients. Then the labels of each client can be precisely computed based on preset logits and gradients of FCL's bias. Extensive experiments show that our attack achieves large-scale label recovery with 100\% accuracy on various datasets and model architectures.

Recently, multiple applications of machine learning have been introduced. They include various possibilities arising when image analysis methods are applied to, broadly understood, video streams. In this context, a novel tool, developed for academic educators to enhance the teaching process by automating, summarizing, and offering prompt feedback on conducting lectures, has been developed. The implemented prototype utilizes machine learning-based techniques to recognise selected didactic and behavioural teachers' features within lecture video recordings. Specifically, users (teachers) can upload their lecture videos, which are preprocessed and analysed using machine learning models. Next, users can view summaries of recognized didactic features through interactive charts and tables. Additionally, stored ML-based prediction results support comparisons between lectures based on their didactic content. In the developed application text-based models trained on lecture transcriptions, with enhancements to the transcription quality, by adopting an automatic speech recognition solution are applied. Furthermore, the system offers flexibility for (future) integration of new/additional machine-learning models and software modules for image and video analysis.

The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~\url{//github.com/FSoft-AI4Code/RepoExec}.

Serialization-based methods, which serialize the 3D voxels and group them into multiple sequences before inputting to Transformers, have demonstrated their effectiveness in 3D object detection. However, serializing 3D voxels into 1D sequences will inevitably sacrifice the voxel spatial proximity. Such an issue is hard to be addressed by enlarging the group size with existing serialization-based methods due to the quadratic complexity of Transformers with feature sizes. Inspired by the recent advances of state space models (SSMs), we present a Voxel SSM, termed as Voxel Mamba, which employs a group-free strategy to serialize the whole space of voxels into a single sequence. The linear complexity of SSMs encourages our group-free design, alleviating the loss of spatial proximity of voxels. To further enhance the spatial proximity, we propose a Dual-scale SSM Block to establish a hierarchical structure, enabling a larger receptive field in the 1D serialization curve, as well as more complete local regions in 3D space. Moreover, we implicitly apply window partition under the group-free framework by positional encoding, which further enhances spatial proximity by encoding voxel positional information. Our experiments on Waymo Open Dataset and nuScenes dataset show that Voxel Mamba not only achieves higher accuracy than state-of-the-art methods, but also demonstrates significant advantages in computational efficiency.

Subset selection with cost constraints aims to select a subset from a ground set to maximize a monotone objective function without exceeding a given budget, which has various applications such as influence maximization and maximum coverage. In real-world scenarios, the budget, representing available resources, may change over time, which requires that algorithms must adapt quickly to new budgets. However, in this dynamic environment, previous algorithms either lack theoretical guarantees or require a long running time. The state-of-the-art algorithm, POMC, is a Pareto optimization approach designed for static problems, lacking consideration for dynamic problems. In this paper, we propose BPODC, enhancing POMC with biased selection and warm-up strategies tailored for dynamic environments. We focus on the ability of BPODC to leverage existing computational results while adapting to budget changes. We prove that BPODC can maintain the best known $(\alpha_f/2)(1-e^{-\alpha_f})$-approximation guarantee when the budget changes. Experiments on influence maximization and maximum coverage show that BPODC adapts more effectively and rapidly to budget changes, with a running time that is less than that of the static greedy algorithm.

The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CleanGen, to mitigate backdoor attacks for generation tasks in LLMs. CleanGenis a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CleanGen is that compared to other LLMs, backdoored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CleanGen to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CleanGen against five SOTA backdoor attacks. Our results show that CleanGen achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CleanGen maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead.

Intent inferral on a hand orthosis for stroke patients is challenging due to the difficulty of data collection from impaired subjects. Additionally, EMG signals exhibit significant variations across different conditions, sessions, and subjects, making it hard for classifiers to generalize. Traditional approaches require a large labeled dataset from the new condition, session, or subject to train intent classifiers; however, this data collection process is burdensome and time-consuming. In this paper, we propose ChatEMG, an autoregressive generative model that can generate synthetic EMG signals conditioned on prompts (i.e., a given sequence of EMG signals). ChatEMG enables us to collect only a small dataset from the new condition, session, or subject and expand it with synthetic samples conditioned on prompts from this new context. ChatEMG leverages a vast repository of previous data via generative training while still remaining context-specific via prompting. Our experiments show that these synthetic samples are classifier-agnostic and can improve intent inferral accuracy for different types of classifiers. We demonstrate that our complete approach can be integrated into a single patient session, including the use of the classifier for functional orthosis-assisted tasks. To the best of our knowledge, this is the first time an intent classifier trained partially on synthetic data has been deployed for functional control of an orthosis by a stroke survivor. Videos and additional information can be found at //jxu.ai/chatemg.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

北京阿比特科技有限公司