亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper explores the industrial multimodal Anomaly Detection (AD) task, which exploits point clouds and RGB images to localize anomalies. We introduce a novel light and fast framework that learns to map features from one modality to the other on nominal samples. At test time, anomalies are detected by pinpointing inconsistencies between observed and mapped features. Extensive experiments show that our approach achieves state-of-the-art detection and segmentation performance in both the standard and few-shot settings on the MVTec 3D-AD dataset while achieving faster inference and occupying less memory than previous multimodal AD methods. Moreover, we propose a layer-pruning technique to improve memory and time efficiency with a marginal sacrifice in performance.

相關內容

This paper introduces a novel ridgelet transform-based method for Poisson image denoising. Our work focuses on harnessing the Poisson noise's unique non-additive and signal-dependent properties, distinguishing it from Gaussian noise. The core of our approach is a new thresholding scheme informed by theoretical insights into the ridgelet coefficients of Poisson-distributed images and adaptive thresholding guided by Stein's method. We verify our theoretical model through numerical experiments and demonstrate the potential of ridgelet thresholding across assorted scenarios. Our findings represent a significant step in enhancing the understanding of Poisson noise and offer an effective denoising method for images corrupted with it.

This paper investigates the spectrum sharing between a multiple-input single-output (MISO) secure communication system and a multiple-input multiple-output (MIMO) radar system in the presence of one suspicious eavesdropper. We jointly design the radar waveform and communication beamforming vector at the two systems, such that the interference between the base station (BS) and radar is reduced, and the detrimental radar interference to the communication system is enhanced to jam the eavesdropper, thereby increasing secure information transmission performance. In particular, by considering the imperfect channel state information (CSI) for the user and eavesdropper, we maximize the worst-case secrecy rate at the user, while ensuring the detection performance of radar system. To tackle this challenging problem, we propose a two-layer robust cooperative algorithm based on the S-lemma and semidefinite relaxation techniques. Simulation results demonstrate that the proposed algorithm achieves significant secrecy rate gains over the non-robust scheme. Furthermore, we illustrate the trade-off between secrecy rate and detection probability.

Decision-making with information displays is a key focus of research in areas like explainable AI, human-AI teaming, and data visualization. However, what constitutes a decision problem, and what is required for an experiment to be capable of concluding that human decisions are flawed in some way, remain open to speculation. We present a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the normative decision. We evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve this criteria. We find that only 6 (17\%) of 35 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.

This paper introduces a quantitative generalization of the ``more capable'' comparison of broadcast channels, which is termed ``more capable with advantage''. Some basic properties are demonstrated (including tensorization on product channels), and a characterisation is given for the cases of Binary Symmetric Channel (BSC) and Binary Erasure Channel (BEC). It is then applied to two problems. First, a list decoding bound on the BSC is given that applies to transitive codes that achieve capacity on the BEC. Second, new lower bounds on entropy rates of binary hidden Markov processes are derived.

This paper delves into the challenges of achieving scalable and effective multi-object modeling for semi-supervised Video Object Segmentation (VOS). Previous VOS methods decode features with a single positive object, limiting the learning of multi-object representation as they must match and segment each target separately under multi-object scenarios. Additionally, earlier techniques catered to specific application objectives and lacked the flexibility to fulfill different speed-accuracy requirements. To address these problems, we present two innovative approaches, Associating Objects with Transformers (AOT) and Associating Objects with Scalable Transformers (AOST). In pursuing effective multi-object modeling, AOT introduces the IDentification (ID) mechanism to allocate each object a unique identity. This approach enables the network to model the associations among all objects simultaneously, thus facilitating the tracking and segmentation of objects in a single network pass. To address the challenge of inflexible deployment, AOST further integrates scalable long short-term transformers that incorporate scalable supervision and layer-wise ID-based attention. This enables online architecture scalability in VOS for the first time and overcomes ID embeddings' representation limitations. Given the absence of a benchmark for VOS involving densely multi-object annotations, we propose a challenging Video Object Segmentation in the Wild (VOSW) benchmark to validate our approaches. We evaluated various AOT and AOST variants using extensive experiments across VOSW and five commonly used VOS benchmarks, including YouTube-VOS 2018 & 2019 Val, DAVIS-2017 Val & Test, and DAVIS-2016. Our approaches surpass the state-of-the-art competitors and display exceptional efficiency and scalability consistently across all six benchmarks. Project page: //github.com/yoxu515/aot-benchmark.

In this paper, we consider topological featurizations of data defined over simplicial complexes, like images and labeled graphs, obtained by convolving this data with various filters before computing persistence. Viewing a convolution filter as a local motif, the persistence diagram of the resulting convolution describes the way the motif is distributed across the simplicial complex. This pipeline, which we call convolutional persistence, extends the capacity of topology to observe patterns in such data. Moreover, we prove that (generically speaking) for any two labeled complexes one can find some filter for which they produce different persistence diagrams, so that the collection of all possible convolutional persistence diagrams is an injective invariant. This is proven by showing convolutional persistence to be a special case of another topological invariant, the Persistent Homology Transform. Other advantages of convolutional persistence are improved stability, greater flexibility for data-dependent vectorizations, and reduced computational complexity for certain data types. Additionally, we have a suite of experiments showing that convolutions greatly improve the predictive power of persistence on a host of classification tasks, even if one uses random filters and vectorizes the resulting diagrams by recording only their total persistences.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

北京阿比特科技有限公司