In the contemporary information era, significantly accelerated by the advent of Large-scale Language Models, the proliferation of scientific literature is reaching unprecedented levels. Researchers urgently require efficient tools for reading and summarizing academic papers, uncovering significant scientific literature, and employing diverse interpretative methodologies. To address this burgeoning demand, the role of automated scientific literature interpretation systems has become paramount. However, prevailing models, both commercial and open-source, confront notable challenges: they often overlook multimodal data, grapple with summarizing over-length texts, and lack diverse user interfaces. In response, we introduce an open-source multi-modal automated academic paper interpretation system (MMAPIS) with three-step process stages, incorporating LLMs to augment its functionality. Our system first employs the hybrid modality preprocessing and alignment module to extract plain text, and tables or figures from documents separately. It then aligns this information based on the section names they belong to, ensuring that data with identical section names are categorized under the same section. Following this, we introduce a hierarchical discourse-aware summarization method. It utilizes the extracted section names to divide the article into shorter text segments, facilitating specific summarizations both within and between sections via LLMs with specific prompts. Finally, we have designed four types of diversified user interfaces, including paper recommendation, multimodal Q\&A, audio broadcasting, and interpretation blog, which can be widely applied across various scenarios. Our qualitative and quantitative evaluations underscore the system's superiority, especially in scientific summarization, where it outperforms solutions relying solely on GPT-4.
Despite achieving rapid developments and with widespread applications, Large Vision-Language Models (LVLMs) confront a serious challenge of being prone to generating hallucinations. An over-reliance on linguistic priors has been identified as a key factor leading to these hallucinations. In this paper, we propose to alleviate this problem by introducing a novel image-biased decoding (IBD) technique. Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM, thereby amplifying the correct information highly correlated with image content while mitigating the hallucinatory errors caused by excessive dependence on text. We further conduct a comprehensive statistical analysis to validate the reliability of our method, and design an adaptive adjustment strategy to achieve robust and flexible handling under varying conditions. Experimental results across multiple evaluation metrics verify that our method, despite not requiring additional training data and only with a minimal increase in model parameters, can significantly reduce hallucinations in LVLMs and enhance the truthfulness of the generated response.
Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge.
This paper introduces the concept of Distributed Intelligent integrated Sensing and Communications (DISAC), which expands the capabilities of Integrated Sensing and Communications (ISAC) towards distributed architectures. Additionally, the DISAC framework integrates novel waveform design with new semantic and goal-oriented communication paradigms, enabling ISAC technologies to transition from traditional data fusion to the semantic composition of diverse sensed and shared information. This progress facilitates large-scale, energy-efficient support for high-precision spatial-temporal processing, optimizing ISAC resource utilization, and enabling effective multi-modal sensing performance. Addressing key challenges such as efficient data management and connect-compute resource utilization, 6G- DISAC stands to revolutionize applications in diverse sectors including transportation, healthcare, and industrial automation. Our study encapsulates the project vision, methodologies, and potential impact, marking a significant stride towards a more connected and intelligent world.
The emergence of Large Language Models (LLMs) has brought to light promising language generation capabilities, particularly in performing tasks like complex reasoning and creative writing. Consequently, distillation through imitation of teacher responses has emerged as a popular technique to transfer knowledge from LLMs to more accessible, Small Language Models (SLMs). While this works well for simpler tasks, there is a substantial performance gap on tasks requiring intricate language comprehension and creativity, such as humor generation. We hypothesize that this gap may stem from the fact that creative tasks might be hard to learn by imitation alone and explore whether an approach, involving supplementary guidance from the teacher, could yield higher performance. To address this, we study the effect of assigning a dual role to the LLM - as a "teacher" generating data, as well as a "critic" evaluating the student's performance. Our experiments on humor generation reveal that the incorporation of feedback significantly narrows the performance gap between SLMs and their larger counterparts compared to merely relying on imitation. As a result, our research highlights the potential of using feedback as an additional dimension to data when transferring complex language abilities via distillation.
This paper proposes an innovative Attention-GAN framework for enhancing cybersecurity, focusing on anomaly detection. In response to the challenges posed by the constantly evolving nature of cyber threats, the proposed approach aims to generate diverse and realistic synthetic attack scenarios, thereby enriching the dataset and improving threat identification. Integrating attention mechanisms with Generative Adversarial Networks (GANs) is a key feature of the proposed method. The attention mechanism enhances the model's ability to focus on relevant features, essential for detecting subtle and complex attack patterns. In addition, GANs address the issue of data scarcity by generating additional varied attack data, encompassing known and emerging threats. This dual approach ensures that the system remains relevant and effective against the continuously evolving cyberattacks. The KDD Cup and CICIDS2017 datasets were used to validate this model, which exhibited significant improvements in anomaly detection. It achieved an accuracy of 99.69% on the KDD dataset and 97.93% on the CICIDS2017 dataset, with precision, recall, and F1-scores above 97%, demonstrating its effectiveness in recognizing complex attack patterns. This study contributes significantly to cybersecurity by providing a scalable and adaptable solution for anomaly detection in the face of sophisticated and dynamic cyber threats. The exploration of GANs for data augmentation highlights a promising direction for future research, particularly in situations where data limitations restrict the development of cybersecurity systems. The attention-GAN framework has emerged as a pioneering approach, setting a new benchmark for advanced cyber-defense strategies.
As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)? This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique `societies' comprised of LLM agents, where each agent is characterized by a specific `trait' (easy-going or overconfident) and engages in collaboration with a distinct `thinking pattern' (debate or reflection). Through evaluating these multi-agent societies on three benchmark datasets, we discern that certain collaborative strategies not only outshine previous top-tier approaches, but also optimize efficiency (using fewer API tokens). Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring foundational social psychology theories. In conclusion, we integrate insights from social psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets\footnote{\url{//github.com/zjunlp/MachineSoM}.}, hoping to catalyze further research in this promising avenue.
With the rapid development of Large Language Models (LLMs), various explorations have arisen to utilize LLMs capability of context understanding on recommender systems. While pioneering strategies have primarily transformed traditional recommendation tasks into challenges of natural language generation, there has been a relative scarcity of exploration in the domain of session-based recommendation (SBR) due to its specificity. SBR has been primarily dominated by Graph Neural Networks, which have achieved many successful outcomes due to their ability to capture both the implicit and explicit relationships between adjacent behaviors. The structural nature of graphs contrasts with the essence of natural language, posing a significant adaptation gap for LLMs. In this paper, we introduce large language models with graphical Session-Based recommendation, named LLMGR, an effective framework that bridges the aforementioned gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks. This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing, leading to a more powerful session-based recommender system that can understand and recommend items within a session. Moreover, to endow the LLM with the capability to empower SBR tasks, we design a series of prompts for both auxiliary and major instruction tuning tasks. These prompts are crafted to assist the LLM in understanding graph-structured data and align textual information with nodes, effectively translating nuanced user interactions into a format that can be understood and utilized by LLM architectures. Extensive experiments on three real-world datasets demonstrate that LLMGR outperforms several competitive baselines, indicating its effectiveness in enhancing SBR tasks and its potential as a research direction for future exploration.
Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.