亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tanglegrams are drawings of two rooted binary phylogenetic trees and a matching between their leaf sets. The trees are drawn crossing-free on opposite sides with their leaf sets facing each other on two vertical lines. Instead of minimizing the number of pairwise edge crossings, we consider the problem of minimizing the number of block crossings, that is, two bundles of lines crossing each other locally. With one tree fixed, the leaves of the second tree can be permuted according to its tree structure. We give a complete picture of the algorithmic complexity of minimizing block crossings in one-sided tanglegrams by showing NP-completeness, constant-factor approximations, and a fixed-parameter algorithm. We also state first results for non-binary trees.

相關內容

Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at //github.com/Improbable-AI/harness-offline-rl.

In stochastic zeroth-order optimization, a problem of practical relevance is understanding how to fully exploit the local geometry of the underlying objective function. We consider a fundamental setting in which the objective function is quadratic, and provide the first tight characterization of the optimal Hessian-dependent sample complexity. Our contribution is twofold. First, from an information-theoretic point of view, we prove tight lower bounds on Hessian-dependent complexities by introducing a concept called energy allocation, which captures the interaction between the searching algorithm and the geometry of objective functions. A matching upper bound is obtained by solving the optimal energy spectrum. Then, algorithmically, we show the existence of a Hessian-independent algorithm that universally achieves the asymptotic optimal sample complexities for all Hessian instances. The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions, which are enabled by a truncation method.

We consider a contextual bandit problem with $S $ contexts and $A $ actions. In each round $t=1,2,\dots$ the learner observes a random context and chooses an action based on its past experience. The learner then observes a random reward whose mean is a function of the context and the action for the round. Under the assumption that the contexts can be lumped into $r\le \min\{S ,A \}$ groups such that the mean reward for the various actions is the same for any two contexts that are in the same group, we give an algorithm that outputs an $\epsilon$-optimal policy after using at most $\widetilde O(r (S +A )/\epsilon^2)$ samples with high probability and provide a matching $\widetilde\Omega(r (S +A )/\epsilon^2)$ lower bound. In the regret minimization setting, we give an algorithm whose cumulative regret up to time $T$ is bounded by $\widetilde O(\sqrt{r^3(S +A )T})$. To the best of our knowledge, we are the first to show the near-optimal sample complexity in the PAC setting and $\widetilde O(\sqrt{{poly}(r)(S+K)T})$ minimax regret in the online setting for this problem. We also show our algorithms can be applied to more general low-rank bandits and get improved regret bounds in some scenarios.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.

Multi-product formulas are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs, Su, Tran et al. to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Secondly, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. Numerical simulations suggest that the error achieved by the dynamic multi-product formulas is close to the optimal one.

We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model of distributed computing. Despite extensive research in this area, our understanding of the vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in the maximum degree of the graph, $\Delta$. Hence, in particular, there is no truly sub-linear time algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic approach for vertex connectivity which allows us to bypass the existing $\Delta$ barrier. As a warm-up to our approach, we show a simple $\widetilde{O}(D)$-round randomized algorithm for computing all cut vertices in a $D$-diameter $n$-vertex graph. This improves upon the $O(D+\Delta/\log n)$-round algorithm of [Pritchard and Thurimella, ICALP 2008]. Our key technical contribution is an $\widetilde{O}(D)$-round randomized algorithm for computing all cut pairs in the graph, improving upon the state-of-the-art $O(\Delta \cdot D)^4$-round algorithm by [Parter, DISC '19]. Note that even for the considerably simpler setting of edge cuts, currently $\widetilde{O}(D)$-round algorithms are known only for detecting pairs of cut edges. Our approach is based on employing the well-known linear graph sketching technique [Ahn, Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator and Tarjan, STOC 1981]. Combining this with a careful characterization of the survivable subgraphs, allows us to determine the connectivity of $G \setminus \{x,y\}$ for every pair $x,y \in V$, using $\widetilde{O}(D)$-rounds. We believe that the tools provided in this paper are useful for omitting the $\Delta$-dependency even for larger cut values.

We study the problem of social welfare maximization in bilateral trade, where two agents, a buyer and a seller, trade an indivisible item. We consider arguably the simplest form of mechanisms -- the fixed-price mechanisms, where the designer offers trade at a fixed price to the seller and buyer. Besides the simple form, fixed-price mechanisms are also the only DSIC and budget balanced mechanisms in bilateral trade. We obtain improved approximation ratios of fixed-price mechanisms in different settings. In the full prior information setting where the designer has access to the value distributions of both the seller and buyer, we show that the optimal fixed-price mechanism can achieve at least $0.72$ of the optimal welfare, and no fixed-price mechanism can achieve more than $0.7381$ of the optimal welfare. Prior to our result the state of the art approximation ratio was $1 - 1/e + 0.0001 \approx 0.632$. Interestingly, we further show that the optimal approximation ratio achievable with full prior information is identical to the optimal approximation ratio obtainable with only one-sided prior information. We further consider two limited information settings. In the first one, the designer is only given the mean of the buyer's (or the seller's) value. We show that with such minimal information, one can already design a fixed-price mechanism that achieves $2/3$ of the optimal social welfare, which surpasses the previous state of the art ratio even when the designer has access to the full prior information. Furthermore, $2/3$ is the optimal attainable ratio in this setting. In the second one, we assume that the designer has sample access to the value distributions. We propose a new family mechanisms called order statistic mechanisms and provide a complete characterization of their approximation ratios for any fixed number of samples.

We examine the problem of variance components testing in general mixed effects models using the likelihood ratio test. We account for the presence of nuisance parameters, i.e. the fact that some untested variances might also be equal to zero. Two main issues arise in this context leading to a non regular setting. First, under the null hypothesis the true parameter value lies on the boundary of the parameter space. Moreover, due to the presence of nuisance parameters the exact location of these boundary points is not known, which prevents from using classical asymptotic theory of maximum likelihood estimation. Then, in the specific context of nonlinear mixed-effects models, the Fisher information matrix is singular at the true parameter value. We address these two points by proposing a shrinked parametric bootstrap procedure, which is straightforward to apply even for nonlinear models. We show that the procedure is consistent, solving both the boundary and the singularity issues, and we provide a verifiable criterion for the applicability of our theoretical results. We show through a simulation study that, compared to the asymptotic approach, our procedure has a better small sample performance and is more robust to the presence of nuisance parameters. A real data application is also provided.

This paper explores variants of the subspace iteration algorithm for computing approximate invariant subspaces. The standard subspace iteration approach is revisited and new variants that exploit gradient-type techniques combined with a Grassmann manifold viewpoint are developed. A gradient method as well as a conjugate gradient technique are described. Convergence of the gradient-based algorithm is analyzed and a few numerical experiments are reported, indicating that the proposed algorithms are sometimes superior to a standard Chebyshev-based subspace iteration when compared in terms of number of matrix vector products, but do not require estimating optimal parameters. An important contribution of this paper to achieve this good performance is the accurate and efficient implementation of an exact line search. In addition, new convergence proofs are presented for the non-accelerated gradient method that includes a locally exponential convergence if started in a $\mathcal{O(\sqrt{\delta})}$ neighbourhood of the dominant subspace with spectral gap $\delta$.

We propose a family of recursive cutting-plane algorithms to solve feasibility problems with constrained memory, which can also be used for first-order convex optimization. Precisely, in order to find a point within a ball of radius $\epsilon$ with a separation oracle in dimension $d$ -- or to minimize $1$-Lipschitz convex functions to accuracy $\epsilon$ over the unit ball -- our algorithms use $\mathcal O(\frac{d^2}{p}\ln \frac{1}{\epsilon})$ bits of memory, and make $\mathcal O((C\frac{d}{p}\ln \frac{1}{\epsilon})^p)$ oracle calls, for some universal constant $C \geq 1$. The family is parametrized by $p\in[d]$ and provides an oracle-complexity/memory trade-off in the sub-polynomial regime $\ln\frac{1}{\epsilon}\gg\ln d$. While several works gave lower-bound trade-offs (impossibility results) -- we explicit here their dependence with $\ln\frac{1}{\epsilon}$, showing that these also hold in any sub-polynomial regime -- to the best of our knowledge this is the first class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $\epsilon\leq 1/\sqrt d$. The algorithms divide the $d$ variables into $p$ blocks and optimize over blocks sequentially, with approximate separation vectors constructed using a variant of Vaidya's method. In the regime $\epsilon \leq d^{-\Omega(d)}$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.

北京阿比特科技有限公司