亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks (DNNs), despite their impressive ability to generalize over-capacity networks, often rely heavily on malignant bias as shortcuts instead of task-related information for discriminative tasks. To address this problem, recent studies utilize auxiliary information related to the bias, which is rarely obtainable in practice, or sift through a handful of bias-free samples for debiasing. However, the success of these methods is not always guaranteed due to the unfulfilled presumptions. In this paper, we propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples. Motivated by our observation that not only discriminative models but also image translation models tend to focus on the malignant bias, CDvG employs an image translation model to transform one bias mode into another while preserving the task-relevant information. Additionally, the bias-transformed views are set against each other through contrastive learning to learn bias-invariant representations. Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent. Furthermore, CDvG can be integrated with the methods that focus on bias-free samples in a plug-and-play manner for additional enhancements, as demonstrated by diverse experimental results.

相關內容

With the increase in data availability, it has been widely demonstrated that neural networks (NN) can capture complex system dynamics precisely in a data-driven manner. However, the architectural complexity and nonlinearity of the NNs make it challenging to synthesize a provably safe controller. In this work, we propose a novel safety filter that relies on convex optimization to ensure safety for a NN system, subject to additive disturbances that are capable of capturing modeling errors. Our approach leverages tools from NN verification to over-approximate NN dynamics with a set of linear bounds, followed by an application of robust linear MPC to search for controllers that can guarantee robust constraint satisfaction. We demonstrate the efficacy of the proposed framework numerically on a nonlinear pendulum system.

Memory-aware network scheduling is becoming increasingly important for deep neural network (DNN) inference on resource-constrained devices. However, due to the complex cell-level and network-level topologies, memory-aware scheduling becomes very challenging. While previous algorithms all suffer from poor scalability, in this paper, we propose an efficient memory-aware scheduling framework based on iterative computation graph optimization. Our framework features an iterative graph fusion algorithm that simplifies the computation graph while preserving the scheduling optimality. We further propose an integer linear programming formulation together with topology-aware variable pruning to schedule the simplified graph efficiently. We evaluate our method against prior-art algorithms on different networks and demonstrate that our method outperforms existing techniques in all the benchmarks, reducing the peak memory footprint by 13.4%, and achieving better scalability for networks with complex network-level topologies.

Recently, data-driven models such as deep neural networks have shown to be promising tools for modelling and state inference in soft robots. However, voluminous amounts of data are necessary for deep models to perform effectively, which requires exhaustive and quality data collection, particularly of state labels. Consequently, obtaining labelled state data for soft robotic systems is challenged for various reasons, including difficulty in the sensorization of soft robots and the inconvenience of collecting data in unstructured environments. To address this challenge, in this paper, we propose a semi-supervised sequential variational Bayes (DSVB) framework for transfer learning and state inference in soft robots with missing state labels on certain robot configurations. Considering that soft robots may exhibit distinct dynamics under different robot configurations, a feature space transfer strategy is also incorporated to promote the adaptation of latent features across multiple configurations. Unlike existing transfer learning approaches, our proposed DSVB employs a recurrent neural network to model the nonlinear dynamics and temporal coherence in soft robot data. The proposed framework is validated on multiple setup configurations of a pneumatic-based soft robot finger. Experimental results on four transfer scenarios demonstrate that DSVB performs effective transfer learning and accurate state inference amidst missing state labels. The data and code are available at //github.com/shageenderan/DSVB.

The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their real-world robustness, i.e., whether a DNN resists black-box adversarial attacks, among which score-based query attacks (SQAs) are most threatening since they can effectively hurt a victim network with the only access to model outputs. Defending against SQAs requires a slight but artful variation of outputs due to the service purpose for users, who share the same output information with SQAs. In this paper, we propose a real-world defense by Unifying Gradients (UniG) of different data so that SQAs could only probe a much weaker attack direction that is similar for different samples. Since such universal attack perturbations have been validated as less aggressive than the input-specific perturbations, UniG protects real-world DNNs by indicating attackers a twisted and less informative attack direction. We implement UniG efficiently by a Hadamard product module which is plug-and-play. According to extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense baselines, UniG significantly improves real-world robustness without hurting clean accuracy on CIFAR10 and ImageNet. For instance, UniG maintains a model of 77.80% accuracy under 2500-query Square attack while the state-of-the-art adversarially-trained model only has 67.34% on CIFAR10. Simultaneously, UniG outperforms all compared baselines in terms of clean accuracy and achieves the smallest modification of the model output. The code is released at //github.com/snowien/UniG-pytorch.

With the availability of large-scale, comprehensive, and general-purpose vision-language (VL) datasets such as MSCOCO, vision-language pre-training (VLP) has become an active area of research and proven to be effective for various VL tasks such as visual-question answering. However, studies on VLP in the medical domain have so far been scanty. To provide a comprehensive perspective on VLP for medical VL tasks, we conduct a thorough experimental analysis to study key factors that may affect the performance of VLP with a unified vision-language Transformer. To allow making sound and quick pre-training decisions, we propose RadioGraphy Captions (RGC), a high-quality, multi-modality radiographic dataset containing 18,434 image-caption pairs collected from an open-access online database MedPix. RGC can be used as a pre-training dataset or a new benchmark for medical report generation and medical image-text retrieval. By utilizing RGC and other available datasets for pre-training, we develop several key insights that can guide future medical VLP research and new strong baselines for various medical VL tasks.

Recent advances in semi-supervised semantic segmentation have been heavily reliant on pseudo labeling to compensate for limited labeled data, disregarding the valuable relational knowledge among semantic concepts. To bridge this gap, we devise LogicDiag, a brand new neural-logic semi-supervised learning framework. Our key insight is that conflicts within pseudo labels, identified through symbolic knowledge, can serve as strong yet commonly ignored learning signals. LogicDiag resolves such conflicts via reasoning with logic-induced diagnoses, enabling the recovery of (potentially) erroneous pseudo labels, ultimately alleviating the notorious error accumulation problem. We showcase the practical application of LogicDiag in the data-hungry segmentation scenario, where we formalize the structured abstraction of semantic concepts as a set of logic rules. Extensive experiments on three standard semi-supervised semantic segmentation benchmarks demonstrate the effectiveness and generality of LogicDiag. Moreover, LogicDiag highlights the promising opportunities arising from the systematic integration of symbolic reasoning into the prevalent statistical, neural learning approaches.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

北京阿比特科技有限公司