In this paper we study the problem of maximizing the distance to a given point over an intersection of balls. It was already known that this problem can be solved in polynomial time and space if the given point is not in the convex hull of the balls centers. The cases where the given point is in the convex hull of the balls centers include all NP-complete problems as we show. Some novel results are given in this area. A novel projection algorithm is developed then applied in the context of the Subset Sum Problem (SSP). Under the assumption that the SSP has at most one solution, we provide a quasi-polynomial algorithm, which decreases the radius of an initial ball containing the solution to the SSP. We perform some numerical tests which show the effectiveness of the proposed algorithm.
In this paper, we show that paint markings are a feasible approach to automatize the analysis of behavioral assays involving honey bees in the field where marking has to be as lightweight as possible. We contribute a novel dataset for bees re-identification with paint-markings with 4392 images and 27 identities. Contrastive learning with a ResNet backbone and triplet loss led to identity representation features with almost perfect recognition in closed setting where identities are known in advance. Diverse experiments evaluate the capability to generalize to separate IDs, and show the impact of using different body parts for identification, such as using the unmarked abdomen only. In addition, we show the potential to fully automate the visit detection and provide preliminary results of compute time for future real-time deployment in the field on an edge device.
We provide a new information-theoretic generalization error bound that is exactly tight (i.e., matching even the constant) for the canonical quadratic Gaussian (location) problem. Most existing bounds are order-wise loose in this setting, which has raised concerns about the fundamental capability of information-theoretic bounds in reasoning the generalization behavior for machine learning. The proposed new bound adopts the individual-sample-based approach proposed by Bu et al., but also has several key new ingredients. Firstly, instead of applying the change of measure inequality on the loss function, we apply it to the generalization error function itself; secondly, the bound is derived in a conditional manner; lastly, a reference distribution is introduced. The combination of these components produces a KL-divergence-based generalization error bound. We show that although the latter two new ingredients can help make the bound exactly tight, removing them does not significantly degrade the bound, leading to an asymptotically tight mutual-information-based bound. We further consider the vector Gaussian setting, where a direct application of the proposed bound again does not lead to tight bounds except in special cases. A refined bound is then proposed for decomposable loss functions, leading to a tight bound for the vector setting.
The Fractional Diffusion Equation (FDE) is a mathematical model that describes anomalous transport phenomena characterized by non-local and long-range dependencies which deviate from the traditional behavior of diffusion. Solving this equation numerically is challenging due to the need to discretize complicated integral operators which increase the computational costs. These complexities are exacerbated by nonlinear source terms, nonsmooth data and irregular domains. In this study, we propose a second order Exponential Time Differencing Finite Element Method (ETD-RDP-FEM) to efficiently solve nonlinear FDE, posed in irregular domains. This approach discretizes matrix exponentials using a rational function with real and distinct poles, resulting in an L-stable scheme that damps spurious oscillations caused by non-smooth initial data. The method is shown to outperform existing second-order methods for FDEs with a higher accuracy and faster computational time.
Given the complex geometry of white matter streamlines, Autoencoders have been proposed as a dimension-reduction tool to simplify the analysis streamlines in a low-dimensional latent spaces. However, despite these recent successes, the majority of encoder architectures only perform dimension reduction on single streamlines as opposed to a full bundle of streamlines. This is a severe limitation of the encoder architecture that completely disregards the global geometric structure of streamlines at the expense of individual fibers. Moreover, the latent space may not be well structured which leads to doubt into their interpretability. In this paper we propose a novel Differentiable Vector Quantized Variational Autoencoder, which are engineered to ingest entire bundles of streamlines as single data-point and provides reliable trustworthy encodings that can then be later used to analyze streamlines in the latent space. Comparisons with several state of the art Autoencoders demonstrate superior performance in both encoding and synthesis.
We address the problem of keypoint selection, and find that the performance of 6DoF pose estimation methods can be improved when pre-defined keypoint locations are learned, rather than being heuristically selected as has been the standard approach. We found that accuracy and efficiency can be improved by training a graph network to select a set of disperse keypoints with similarly distributed votes. These votes, learned by a regression network to accumulate evidence for the keypoint locations, can be regressed more accurately compared to previous heuristic keypoint algorithms. The proposed KeyGNet, supervised by a combined loss measuring both Wasserstein distance and dispersion, learns the color and geometry features of the target objects to estimate optimal keypoint locations. Experiments demonstrate the keypoints selected by KeyGNet improved the accuracy for all evaluation metrics of all seven datasets tested, for three keypoint voting methods. The challenging Occlusion LINEMOD dataset notably improved ADD(S) by +16.4% on PVN3D, and all core BOP datasets showed an AR improvement for all objects, of between +1% and +21.5%. There was also a notable increase in performance when transitioning from single object to multiple object training using KeyGNet keypoints, essentially eliminating the SISO-MIMO gap for Occlusion LINEMOD.
Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.
Since their inception, Variational Autoencoders (VAEs) have become central in machine learning. Despite their widespread use, numerous questions regarding their theoretical properties remain open. Using PAC-Bayesian theory, this work develops statistical guarantees for VAEs. First, we derive the first PAC-Bayesian bound for posterior distributions conditioned on individual samples from the data-generating distribution. Then, we utilize this result to develop generalization guarantees for the VAE's reconstruction loss, as well as upper bounds on the distance between the input and the regenerated distributions. More importantly, we provide upper bounds on the Wasserstein distance between the input distribution and the distribution defined by the VAE's generative model.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.