亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The characteristics of data like distribution and heterogeneity, become more complex and counterintuitive as the dimensionality increases. This phenomenon is known as curse of dimensionality, where common patterns and relationships (e.g., internal and boundary pattern) that hold in low-dimensional space may be invalid in higher-dimensional space. It leads to a decreasing performance for the regression, classification or clustering models or algorithms. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

相關內容

維度災難是指在高維空間中分析和組織數據時出現的各種現象,這些現象在低維設置(例如日常體驗的三維物理空間)中不會發生。

This study critically evaluates the efficacy of prompting methods in enhancing the mathematical reasoning capability of large language models (LLMs). The investigation uses three prescriptive prompting methods - simple, persona, and conversational prompting - known for their effectiveness in enhancing the linguistic tasks of LLMs. We conduct this analysis on OpenAI's LLM chatbot, ChatGPT-3.5, on extensive problem sets from the MATH, GSM8K, and MMLU datasets, encompassing a broad spectrum of mathematical challenges. A grading script adapted to each dataset is used to determine the effectiveness of these prompting interventions in enhancing the model's mathematical analysis power. Contrary to expectations, our empirical analysis reveals that none of the investigated methods consistently improves over ChatGPT-3.5's baseline performance, with some causing significant degradation. Our findings suggest that prompting strategies do not necessarily generalize to new domains, in this study failing to enhance mathematical performance.

Explainable AI methods facilitate the understanding of model behaviour, yet, small, imperceptible perturbations to inputs can vastly distort explanations. As these explanations are typically evaluated holistically, before model deployment, it is difficult to assess when a particular explanation is trustworthy. Some studies have tried to create confidence estimators for explanations, but none have investigated an existing link between uncertainty and explanation quality. We artificially simulate epistemic uncertainty in text input by introducing noise at inference time. In this large-scale empirical study, we insert different levels of noise perturbations and measure the effect on the output of pre-trained language models and different uncertainty metrics. Realistic perturbations have minimal effect on performance and explanations, yet masking has a drastic effect. We find that high uncertainty doesn't necessarily imply low explanation plausibility; the correlation between the two metrics can be moderately positive when noise is exposed during the training process. This suggests that noise-augmented models may be better at identifying salient tokens when uncertain. Furthermore, when predictive and epistemic uncertainty measures are over-confident, the robustness of a saliency map to perturbation can indicate model stability issues. Integrated Gradients shows the overall greatest robustness to perturbation, while still showing model-specific patterns in performance; however, this phenomenon is limited to smaller Transformer-based language models.

Coding theory revolves around the incorporation of redundancy into transmitted symbols, computation tasks, and stored data to guard against adversarial manipulation. However, error correction in coding theory is contingent upon a strict trust assumption. In the context of computation and storage, it is required that honest nodes outnumber adversarial ones by a certain margin. However, in several emerging real-world cases, particularly, in decentralized blockchain-oriented applications, such assumptions are often unrealistic. Consequently, despite the important role of coding in addressing significant challenges within decentralized systems, its applications become constrained. Still, in decentralized platforms, a distinctive characteristic emerges, offering new avenues for secure coding beyond the constraints of conventional methods. In these scenarios, the adversary benefits when the legitimate decoder recovers the data, and preferably with a high estimation error. This incentive motivates them to act rationally, trying to maximize their gains. In this paper, we propose a game theoretic formulation for coding, called the game of coding, that captures this unique dynamic where each of the adversary and the data collector (decoder) have a utility function to optimize. The utility functions reflect the fact that both the data collector and the adversary are interested in increasing the chance of data being recoverable by the data collector. Moreover, the utility functions express the interest of the data collector to estimate the input with lower estimation error, but the opposite interest of the adversary. As a first, still highly non-trivial step, we characterize the equilibrium of the game for the repetition code with a repetition factor of 2, for a wide class of utility functions with minimal assumptions.

The rise of the Internet and the exponential increase in data have made manual data summarization and analysis a challenging task. Instagram social network is a prominent social network widely utilized in Iran for information sharing and communication across various age groups. The inherent structure of Instagram, characterized by its text-rich content and graph-like data representation, enables the utilization of text and graph processing techniques for data analysis purposes. The degree distributions of these networks exhibit scale-free characteristics, indicating non-random growth patterns. Recently, word co-occurrence has gained attention from researchers across multiple disciplines due to its simplicity and practicality. Keyword extraction is a crucial task in natural language processing. In this study, we demonstrated that high-precision extraction of keywords from Instagram posts in the Persian language can be achieved using unsupervised word co-occurrence methods without resorting to conventional techniques such as clustering or pre-trained models. After graph visualization and community detection, it was observed that the top topics covered by news agencies are represented by these graphs. This approach is generalizable to new and diverse datasets and can provide acceptable outputs for new data. To the author's knowledge, this method has not been employed in the Persian language before on Instagram social network. The new crawled data has been publicly released on GitHub for exploration by other researchers. By employing this method, it is possible to use other graph-based algorithms, such as community detections. The results help us to identify the key role of different news agencies in information diffusion among the public, identify hidden communities, and discover latent patterns among a massive amount of data.

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

We study the computational complexity of computing Bayes-Nash equilibria in first-price auctions with discrete value distributions and discrete bidding space, under general subjective beliefs. It is known that such auctions do not always have pure equilibria. In this paper we prove that the problem of deciding their existence is NP-complete, even for approximate equilibria. On the other hand, it can be shown that mixed equilibria are guaranteed to exist; however, their computational complexity has not been studied before. We establish the PPAD-completeness of computing a mixed equilibrium and we complement this by an efficient algorithm for finding symmetric approximate equilibria in the special case of iid priors. En route to these results, we develop a computational equivalence framework between continuous and discrete first-price auctions, which can be of independent interest, and which allows us to transfer existing positive and negative results from one setting to the other. Finally, we show that correlated equilibria of the auction can be computed in polynomial time.

The increasing availability of hydrological and physiographic spatiotemporal data has boosted machine learning's role in rapid flood mapping. Yet, data scarcity, especially high-resolution DEMs, challenges regions with limited access. This paper examines how DEM type and resolution affect flood prediction accuracy, utilizing a cutting-edge deep learning (DL) method called 1D convolutional neural network (CNN). It utilizes synthetic hydrographs as training input and water depth data obtained from LISFLOOD-FP, a 2D hydrodynamic model, as target data. This study investigates digital surface models (DSMs) and digital terrain models (DTMs) derived from a 1 m LIDAR-based DTM, with resolutions from 15 to 30 m. The methodology is applied and assessed in an established benchmark, the city of Carlisle, UK. The models' performance is then evaluated and compared against an observed flood event using RMSE, Bias, and Fit indices. Leveraging the insights gained from this region, the paper discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone region, exemplified by Pakistan. Results indicated that utilizing a 30 m DTM outperformed a 30 m DSM in terms of flood depth prediction accuracy by about 21% during the flood peak stage, highlighting the superior performance of DTM at lower resolutions. Increasing the resolution of DTM to 15 m resulted in a minimum 50% increase in RMSE and a 20% increase in fit index across all flood stages. The findings emphasize that while a coarser resolution DEM may impact the accuracy of machine learning models, it remains a viable option for rapid flood prediction. However, even a slight improvement in data resolution in data-scarce regions would provide significant added value, ultimately enhancing flood risk management.

The convergence rate of a Markov chain to its stationary distribution is typically assessed using the concept of total variation mixing time. However, this worst-case measure often yields pessimistic estimates and is challenging to infer from observations. In this paper, we advocate for the use of the average-mixing time as a more optimistic and demonstrably easier-to-estimate alternative. We further illustrate its applicability across a range of settings, from two-point to countable spaces, and discuss some practical implications.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司