亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning surrogate models have shown promise in solving partial differential equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy, and is significantly faster compared to numerical solvers, on a variety of PDEs, such as fluid flows. However, the FNO uses the Fast Fourier transform (FFT), which is limited to rectangular domains with uniform grids. In this work, we propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries. Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid. The FNO model with the FFT is applied in the latent space. The resulting geo-FNO model has both the computation efficiency of FFT and the flexibility of handling arbitrary geometries. Our geo-FNO is also flexible in terms of its input formats, viz., point clouds, meshes, and design parameters are all valid inputs. We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems. Geo-FNO is $10^5$ times faster than the standard numerical solvers and twice more accurate compared to direct interpolation on existing ML-based PDE solvers such as the standard FNO.

相關內容

In unitary property testing a quantum algorithm, also known as a tester, is given query access to a black-box unitary and has to decide whether it satisfies some property. We propose a new technique for proving lower bounds on the quantum query complexity of unitary property testing and related problems, which utilises its connection to unitary channel discrimination. The main advantage of this technique is that all obtained lower bounds hold for any $\mathsf{C}$-tester with $\mathsf{C} \subseteq \mathsf{QMA}(2)/\mathsf{qpoly}$, showing that even having access to both (unentangled) quantum proofs and advice does not help for many unitary problems. We apply our technique to prove lower bounds for problems like quantum phase estimation, the entanglement entropy problem, quantum Gibbs sampling and more, removing all logarithmic factors in the lower bounds obtained by the sample-to-query lifting theorem of Wang and Zhang (2023). As a direct corollary, we show that there exist quantum oracles relative to which $\mathsf{QMA}(2) \not\supset \mathsf{SBQP}$ and $\mathsf{QMA}/\mathsf{qpoly} \not\supset \mathsf{SBQP}$. The former shows that, at least in a black-box way, having unentangled quantum proofs does not help in solving problems that require high precision.

The spatial error model (SEM) is a type of simultaneous autoregressive (SAR) model for analysing spatially correlated data. Markov chain Monte Carlo (MCMC) is one of the most widely used Bayesian methods for estimating SEM, but it has significant limitations when it comes to handling missing data in the response variable due to its high computational cost. Variational Bayes (VB) approximation offers an alternative solution to this problem. Two VB-based algorithms employing Gaussian variational approximation with factor covariance structure are presented, joint VB (JVB) and hybrid VB (HVB), suitable for both missing at random and not at random inference. When dealing with many missing values, the JVB is inaccurate, and the standard HVB algorithm struggles to achieve accurate inferences. Our modified versions of HVB enable accurate inference within a reasonable computational time, thus improving its performance. The performance of the VB methods is evaluated using simulated and real datasets.

We present a novel tensor interpolation algorithm for the time integration of nonlinear tensor differential equations (TDEs) on the tensor train and Tucker tensor low-rank manifolds, which are the building blocks of many tensor network decompositions. This paper builds upon our previous work (Donello et al., Proceedings of the Royal Society A, Vol. 479, 2023) on solving nonlinear matrix differential equations on low-rank matrix manifolds using CUR decompositions. The methodology we present offers multiple advantages: (i) It delivers near-optimal computational savings both in terms of memory and floating-point operations by leveraging cross algorithms based on the discrete empirical interpolation method to strategically sample sparse entries of the time-discrete TDEs to advance the solution in low-rank form. (ii) Numerical demonstrations show that the time integration is robust in the presence of small singular values. (iii) High-order explicit Runge-Kutta time integration schemes are developed. (iv) The algorithm is easy to implement, as it requires the evaluation of the full-order model at strategically selected entries and does not use tangent space projections, whose efficient implementation is intrusive. We demonstrate the efficiency of the presented algorithm for several test cases, including a nonlinear 100-dimensional TDE for the evolution of a tensor of size $70^{100} \approx 3.2 \times 10^{184}$ and a stochastic advection-diffusion-reaction equation with a tensor of size $4.7 \times 10^9$.

Neural operators learn mappings between function spaces, which is practical for learning solution operators of PDEs and other scientific modeling applications. Among them, the Fourier neural operator (FNO) is a popular architecture that performs global convolutions in the Fourier space. However, such global operations are often prone to over-smoothing and may fail to capture local details. In contrast, convolutional neural networks (CNN) can capture local features but are limited to training and inference at a single resolution. In this work, we present a principled approach to operator learning that can capture local features under two frameworks by learning differential operators and integral operators with locally supported kernels. Specifically, inspired by stencil methods, we prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs. To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions. Both these approaches preserve the properties of operator learning and, hence, the ability to predict at any resolution. Adding our layers to FNOs significantly improves their performance, reducing the relative L2-error by 34-72% in our experiments, which include a turbulent 2D Navier-Stokes and the spherical shallow water equations.

We study gradient descent (GD) dynamics on logistic regression problems with large, constant step sizes. For linearly-separable data, it is known that GD converges to the minimizer with arbitrarily large step sizes, a property which no longer holds when the problem is not separable. In fact, the behaviour can be much more complex -- a sequence of period-doubling bifurcations begins at the critical step size $2/\lambda$, where $\lambda$ is the largest eigenvalue of the Hessian at the solution. Using a smaller-than-critical step size guarantees convergence if initialized nearby the solution: but does this suffice globally? In one dimension, we show that a step size less than $1/\lambda$ suffices for global convergence. However, for all step sizes between $1/\lambda$ and the critical step size $2/\lambda$, one can construct a dataset such that GD converges to a stable cycle. In higher dimensions, this is actually possible even for step sizes less than $1/\lambda$. Our results show that although local convergence is guaranteed for all step sizes less than the critical step size, global convergence is not, and GD may instead converge to a cycle depending on the initialization.

Modeling real-world problems with partial differential equations (PDEs) is a prominent topic in scientific machine learning. Classic solvers for this task continue to play a central role, e.g. to generate training data for deep learning analogues. Any such numerical solution is subject to multiple sources of uncertainty, both from limited computational resources and limited data (including unknown parameters). Gaussian process analogues to classic PDE simulation methods have recently emerged as a framework to construct fully probabilistic estimates of all these types of uncertainty. So far, much of this work focused on theoretical foundations, and as such is not particularly data efficient or scalable. Here we propose a framework combining a discretization scheme based on the popular Finite Volume Method with complementary numerical linear algebra techniques. Practical experiments, including a spatiotemporal tsunami simulation, demonstrate substantially improved scaling behavior of this approach over previous collocation-based techniques.

Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.

We consider the computational efficiency of Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to partial differential equations with random coefficients. These arise, for example, in groundwater flow modelling, where a commonly used model for the unknown parameter is a random field. We make use of the circulant embedding procedure for sampling from the aforementioned coefficient. To improve the computational complexity of the MLMC estimator in the case of highly oscillatory random fields, we devise and implement a smoothing technique integrated into the circulant embedding method. This allows to choose the coarsest mesh on the first level of MLMC independently of the correlation length of the covariance function of the random field, leading to considerable savings in computational cost. We illustrate this with numerical experiments, where we see a saving of factor 5-10 in computational cost for accuracies of practical interest.

Neural operators effectively solve PDE problems from data without knowing the explicit equations, which learn the map from the input sequences of observed samples to the predicted values. Most existed works build the model in the original geometric space, leading to high computational costs when the number of sample points is large. We present the Latent Neural Operator (LNO) solving PDEs in the latent space. In particular, we first propose Physics-Cross-Attention (PhCA) transforming representation from the geometric space to the latent space, then learn the operator in the latent space, and finally recover the real-world geometric space via the inverse PhCA map. Our model retains flexibility that can decode values in any position not limited to locations defined in training set, and therefore can naturally perform interpolation and extrapolation tasks particularly useful for inverse problems. Moreover, the proposed LNO improves in both prediction accuracy and computational efficiency. Experiments show that LNO reduces the GPU memory by 50%, speeds up training 1.8 times, and reaches state-of-the-art accuracy on four out of six benchmarks for forward problems and a benchmark for inverse problem.

Large Language Models (LLMs) hold the potential to revolutionize autoformalization. The introduction of Lean4, a mathematical programming language, presents an unprecedented opportunity to rigorously assess the autoformalization capabilities of LLMs. This paper introduces a novel evaluation benchmark designed for Lean4, applying it to test the abilities of state-of-the-art LLMs, including GPT-3.5, GPT-4, and Gemini Pro. Our comprehensive analysis reveals that, despite recent advancements, these LLMs still exhibit limitations in autoformalization, particularly in more complex areas of mathematics. These findings underscore the need for further development in LLMs to fully harness their potential in scientific research and development. This study not only benchmarks current LLM capabilities but also sets the stage for future enhancements in autoformalization.

北京阿比特科技有限公司