Augmented reality for laparoscopic liver resection is a visualisation mode that allows a surgeon to localise tumours and vessels embedded within the liver by projecting them on top of a laparoscopic image. Preoperative 3D models extracted from CT or MRI data are registered to the intraoperative laparoscopic images during this process. In terms of 3D-2D fusion, most of the algorithms make use of anatomical landmarks to guide registration. These landmarks include the liver's inferior ridge, the falciform ligament, and the occluding contours. They are usually marked by hand in both the laparoscopic image and the 3D model, which is time-consuming and may contain errors if done by a non-experienced user. Therefore, there is a need to automate this process so that augmented reality can be used effectively in the operating room. We present the Preoperative-to-Intraoperative Laparoscopic Fusion Challenge (P2ILF), held during the Medical Imaging and Computer Assisted Interventions (MICCAI 2022) conference, which investigates the possibilities of detecting these landmarks automatically and using them in registration. The challenge was divided into two tasks: 1) A 2D and 3D landmark detection task and 2) a 3D-2D registration task. The teams were provided with training data consisting of 167 laparoscopic images and 9 preoperative 3D models from 9 patients, with the corresponding 2D and 3D landmark annotations. A total of 6 teams from 4 countries participated, whose proposed methods were evaluated on 16 images and two preoperative 3D models from two patients. All the teams proposed deep learning-based methods for the 2D and 3D landmark segmentation tasks and differentiable rendering-based methods for the registration task. Based on the experimental outcomes, we propose three key hypotheses that determine current limitations and future directions for research in this domain.
This work addresses the problem of high-dimensional classification by exploring the generalized Bayesian logistic regression method under a sparsity-inducing prior distribution. The method involves utilizing a fractional power of the likelihood resulting the fractional posterior. Our study yields concentration results for the fractional posterior, not only on the joint distribution of the predictor and response variable but also for the regression coefficients. Significantly, we derive novel findings concerning misclassification excess risk bounds using sparse generalized Bayesian logistic regression. These results parallel recent findings for penalized methods in the frequentist literature. Furthermore, we extend our results to the scenario of model misspecification, which is of critical importance.
In this work we employ importance sampling (IS) techniques to track a small over-threshold probability of a running maximum associated with the solution of a stochastic differential equation (SDE) within the framework of ensemble Kalman filtering (EnKF). Between two observation times of the EnKF, we propose to use IS with respect to the initial condition of the SDE, IS with respect to the Wiener process via a stochastic optimal control formulation, and combined IS with respect to both initial condition and Wiener process. Both IS strategies require the approximation of the solution of Kolmogorov Backward equation (KBE) with boundary conditions. In multidimensional settings, we employ a Markovian projection dimension reduction technique to obtain an approximation of the solution of the KBE by just solving a one dimensional PDE. The proposed ideas are tested on two illustrative examples: Double Well SDE and Langevin dynamics, and showcase a significant variance reduction compared to the standard Monte Carlo method and another sampling-based IS technique, namely, multilevel cross entropy.
Image codecs are typically optimized to trade-off bitrate \vs distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual or adversarial losses. To improve image quality and remove dependency on the bitrate, we propose to decode with iterative diffusion models. We condition the decoding process on a vector-quantized image representation, as well as a global image description to provide additional context. We dub our model PerCo for 'perceptual compression', and compare it to state-of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate is more than an order of magnitude smaller than those considered in most prior work, compressing a 512x768 Kodak image with less than 153 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID. As predicted by rate-distortion-perception theory, visual quality is less dependent on the bitrate than previous methods.
To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.
To succeed in their objectives, groups of individuals must be able to make quick and accurate collective decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programmed to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many times they should be better at it. Thanks to their mathematical tractability, simple models like the voter model and the local majority rule model have proven useful to describe the dynamics of such collective decision-making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their social network. At least among animals and robots, options with a better quality are exchanged more often and therefore spread faster than lower-quality options, leading to the collective selection of the best option. With our work, we study the impact of individuals making errors in pooling others' opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that reduced network connectivity corresponds to an increase in collective decision accuracy.
Image information is restricted by the dynamic range of the detector, which can be addressed using multi-exposure image fusion (MEF). The conventional MEF approach employed in ptychography is often inadequate under conditions of low signal-to-noise ratio (SNR) or variations in illumination intensity. To address this, we developed a Bayesian approach for MEF based on a modified Poisson noise model that considers the background and saturation. Our method outperforms conventional MEF under challenging experimental conditions, as demonstrated by the synthetic and experimental data. Furthermore, this method is versatile and applicable to any imaging scheme requiring high dynamic range (HDR).
Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).
Evaluating the expected information gain (EIG) is a critical task in many areas of computational science and statistics, necessitating the approximation of nested integrals. Available techniques for this problem based on quasi-Monte Carlo (QMC) methods have focused on enhancing the efficiency of either the inner or outer integral approximation. In this work, we introduce a novel approach that extends the scope of these efforts to address inner and outer expectations simultaneously. Leveraging the principles of Owen's scrambling of digital nets, we develop a randomized QMC (rQMC) method that improves the convergence behavior of the approximation of nested integrals. We also indicate how to combine this methodology with importance sampling to address a measure concentration arising in the inner integral. Our method capitalizes on the unique structure of nested expectations to offer a more efficient approximation mechanism. By incorporating Owen's scrambling techniques, we handle integrands exhibiting infinite variation in the Hardy--Krause sense, paving the way for theoretically sound error estimates. As the main contribution of this work, we derive asymptotic error bounds for the bias and variance of our estimator, along with regularity conditions under which these error bounds can be attained. In addition, we provide nearly optimal sample sizes for the rQMC approximations, which are helpful for the actual numerical implementations. Moreover, we verify the quality of our estimator through numerical experiments in the context of EIG estimation. Specifically, we compare the computational efficiency of our rQMC method against standard nested MC integration across two case studies: one in thermo-mechanics and the other in pharmacokinetics. These examples highlight our approach's computational savings and enhanced applicability.
We propose a new framework of Hessian-free force-gradient integrators that do not require the analytical expression of the force-gradient term based on the Hessian of the potential. Due to that the new class of decomposition algorithms for separable Hamiltonian systems with quadratic kinetic energy may be particularly useful when applied to Hamiltonian systems where an evaluation of the Hessian is significantly more expensive than an evaluation of its gradient, e.g. in molecular dynamics simulations of classical systems. Numerical experiments of an N-body problem, as well as applications to the molecular dynamics step in the Hybrid Monte Carlo (HMC) algorithm for lattice simulations of the Schwinger model and Quantum Chromodynamics (QCD) verify these expectations.
Cardiac valve event timing plays a crucial role when conducting clinical measurements using echocardiography. However, established automated approaches are limited by the need of external electrocardiogram sensors, and manual measurements often rely on timing from different cardiac cycles. Recent methods have applied deep learning to cardiac timing, but they have mainly been restricted to only detecting two key time points, namely end-diastole (ED) and end-systole (ES). In this work, we propose a deep learning approach that leverages triplane recordings to enhance detection of valve events in echocardiography. Our method demonstrates improved performance detecting six different events, including valve events conventionally associated with ED and ES. Of all events, we achieve an average absolute frame difference (aFD) of maximum 1.4 frames (29 ms) for start of diastasis, down to 0.6 frames (12 ms) for mitral valve opening when performing a ten-fold cross-validation with test splits on triplane data from 240 patients. On an external independent test consisting of apical long-axis data from 180 other patients, the worst performing event detection had an aFD of 1.8 (30 ms). The proposed approach has the potential to significantly impact clinical practice by enabling more accurate, rapid and comprehensive event detection, leading to improved clinical measurements.