We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition, designed to excel in action planning for complex interactive reasoning tasks. SwiftSage integrates the strengths of behavior cloning and prompting large language models (LLMs) to enhance task completion performance. The framework comprises two primary modules: the Swift module, representing fast and intuitive thinking, and the Sage module, emulating deliberate thought processes. The Swift module is a small encoder-decoder LM fine-tuned on the oracle agent's action trajectories, while the Sage module employs LLMs such as GPT-4 for subgoal planning and grounding. We develop a heuristic method to harmoniously integrate the two modules, resulting in a more efficient and robust problem-solving process. In 30 tasks from the ScienceWorld benchmark, SwiftSage significantly outperforms other methods such as SayCan, ReAct, and Reflexion, demonstrating its effectiveness in solving complex interactive tasks.
We propose a novel coding scheme for DNA-based storage systems, called the shift-interleave (SI) coding, designed to correct insertion, deletion, and substitution (IDS) errors, as well as sequence losses. The SI coding scheme employs multiple codewords from two binary low-density parity-check codes. These codewords are processed to form DNA base sequences through shifting, bit-to-base mapping, and interleaving. At the receiver side, an efficient non-iterative detection and decoding scheme is employed to sequentially estimate codewords. The numerical results demonstrate the excellent performance of the SI coding scheme in correcting both IDS errors and sequence losses.
Serverless computing relieves developers from the burden of resource management, thus providing ease-of-use to the users and the opportunity to optimize resource utilization for the providers. However, today's serverless systems lack performance guarantees for function invocations, thus limiting support for performance-critical applications: we observed severe performance variability (up to 6x). Providers lack visibility into user functions and hence find it challenging to right-size them: we observed heavy resource underutilization (up to 80%). To understand the causes behind the performance variability and underutilization, we conducted a measurement study of commonly deployed serverless functions and learned that the function performance and resource utilization depend crucially on function semantics and inputs. Our key insight is to delay making resource allocation decisions until after the function inputs are available. We introduce Shabari, a resource management framework for serverless systems that makes decisions as late as possible to right-size each invocation to meet functions' performance objectives (SLOs) and improve resource utilization. Shabari uses an online learning agent to right-size each function invocation based on the features of the function input and makes cold-start-aware scheduling decisions. For a range of serverless functions and inputs, Shabari reduces SLO violations by 11-73% while not wasting any vCPUs and reducing wasted memory by 64-94% in the median case, compared to state-of-the-art systems, including Aquatope, Parrotfish, and Cypress.
The advancement of large language models (LLMs) leads to a new era marked by the development of autonomous applications in the real world, which drives innovation in the creation of advanced web-based agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we propose a new evaluation protocol for web agents to address the challenges of automatic evaluation of open-ended web agent tasks, leveraging the robust multimodal comprehension capabilities of GPT-4V. We create a new benchmark by gathering real-world tasks from 15 widely used websites to evaluate our agents. We show that WebVoyager achieves a 55.7% task success rate, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager in practical applications. We found that our proposed automatic evaluation achieves 85.3% agreement with human judgment, paving the way for further development of web agents in a real-world setting.
In causal inference with panel data under staggered adoption, the goal is to estimate and derive confidence intervals for potential outcomes and treatment effects. We propose a computationally efficient procedure, involving only simple matrix algebra and singular value decomposition. We derive non-asymptotic bounds on the entrywise error, establishing its proximity to a suitably scaled Gaussian variable. Despite its simplicity, our procedure turns out to be instance-optimal, in that our theoretical scaling matches a local instance-wise lower bound derived via a Bayesian Cram\'{e}r-Rao argument. Using our insights, we develop a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage guarantees. Our analysis is based on a general inferential toolbox for the SVD algorithm applied to the matrix denoising model, which might be of independent interest.
We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
Reinforcement learning (RL) excels in applications such as video games and robotics, but ensuring safety and stability remains challenging when using RL to control real-world systems where using model-free algorithms suffering from low sample efficiency might be prohibitive. This paper first provides safety and stability definitions for the RL system, and then introduces a Neural ordinary differential equations-based Lyapunov-Barrier Actor-Critic (NLBAC) framework that leverages Neural Ordinary Differential Equations (NODEs) to approximate system dynamics and integrates the Control Barrier Function (CBF) and Control Lyapunov Function (CLF) frameworks with the actor-critic method to assist in maintaining the safety and stability for the system. Within this framework, we employ the augmented Lagrangian method to update the RL-based controller parameters. Additionally, we introduce an extra backup controller in situations where CBF constraints for safety and the CLF constraint for stability cannot be satisfied simultaneously. Simulation results demonstrate that the framework leads the system to approach the desired state and allows fewer violations of safety constraints with better sample efficiency compared to other methods.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.