亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are $\mathrm{SE}(n)$ equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · · ASP · 動力系統 · 情景 ·
2024 年 5 月 3 日

In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behavior of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. However, timing constraints are important in many applications like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time temporal equilibrium logic, in which temporal operators are constrained by intervals over natural numbers. The resulting Metric Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. To this end, we define a translation of metric formulas into monadic first-order formulas and give a correspondence between their models in Metric Equilibrium Logic and Monadic Quantified Equilibrium Logic, respectively. Interestingly, our translation provides a blue print for implementation in terms of ASP modulo difference constraints.

Of all the vector fields surrounding the minima of recurrent learning setups, the gradient field with its exploding and vanishing updates appears a poor choice for optimization, offering little beyond efficient computability. We seek to improve this suboptimal practice in the context of physics simulations, where backpropagating feedback through many unrolled time steps is considered crucial to acquiring temporally coherent behavior. The alternative vector field we propose follows from two principles: physics simulators, unlike neural networks, have a balanced gradient flow, and certain modifications to the backpropagation pass leave the positions of the original minima unchanged. As any modification of backpropagation decouples forward and backward pass, the rotation-free character of the gradient field is lost. Therefore, we discuss the negative implications of using such a rotational vector field for optimization and how to counteract them. Our final procedure is easily implementable via a sequence of gradient stopping and component-wise comparison operations, which do not negatively affect scalability. Our experiments on three control problems show that especially as we increase the complexity of each task, the unbalanced updates from the gradient can no longer provide the precise control signals necessary while our method still solves the tasks. Our code can be found at //github.com/tum-pbs/StableBPTT.

Diabetic Retinopathy (DR), a prevalent complication in diabetes patients, can lead to vision impairment due to lesions formed on the retina. Detecting DR at an advanced stage often results in irreversible blindness. The traditional process of diagnosing DR through retina fundus images by ophthalmologists is not only time-intensive but also expensive. While classical transfer learning models have been widely adopted for computer-aided detection of DR, their high maintenance costs can hinder their detection efficiency. In contrast, Quantum Transfer Learning offers a more effective solution to this challenge. This approach is notably advantageous because it operates on heuristic principles, making it highly optimized for the task. Our proposed methodology leverages this hybrid quantum transfer learning technique to detect DR. To construct our model, we utilize the APTOS 2019 Blindness Detection dataset, available on Kaggle. We employ the ResNet-18, ResNet34, ResNet50, ResNet101, ResNet152 and Inception V3, pre-trained classical neural networks, for the initial feature extraction. For the classification stage, we use a Variational Quantum Classifier. Our hybrid quantum model has shown remarkable results, achieving an accuracy of 97% for ResNet-18. This demonstrates that quantum computing, when integrated with quantum machine learning, can perform tasks with a level of power and efficiency unattainable by classical computers alone. By harnessing these advanced technologies, we can significantly improve the detection and diagnosis of Diabetic Retinopathy, potentially saving many from the risk of blindness. Keywords: Diabetic Retinopathy, Quantum Transfer Learning, Deep Learning

Most existing temporal point process models are characterized by conditional intensity function. These models often require numerical approximation methods for likelihood evaluation, which potentially hurts their performance. By directly modelling the integral of the intensity function, i.e., the cumulative hazard function (CHF), the likelihood can be evaluated accurately, making it a promising approach. However, existing CHF-based methods are not well-defined, i.e., the mathematical constraints of CHF are not completely satisfied, leading to untrustworthy results. For multivariate temporal point process, most existing methods model intensity (or density, etc.) functions for each variate, limiting the scalability. In this paper, we explore using neural networks to model a flexible but well-defined CHF and learning the multivariate temporal point process with low parameter complexity. Experimental results on six datasets show that the proposed model achieves the state-of-the-art performance on data fitting and event prediction tasks while having significantly fewer parameters and memory usage than the strong competitors. The source code and data can be obtained from //github.com/lbq8942/NPP.

In recent years, several experimental groups have claimed demonstrations of ``quantum supremacy'' or computational quantum advantage. A notable first claim by Google Quantum AI revolves around a metric called the Linear Cross Entropy Benchmarking (Linear XEB), which has been used in multiple quantum supremacy experiments since. The complexity-theoretic hardness of spoofing Linear XEB has nevertheless been doubtful due to its dependence on the Cross-Entropy Quantum Threshold (XQUATH) conjecture put forth by Aaronson and Gunn, which has been disproven for sublinear depth circuits. In efforts on demonstrating quantum supremacy by quantum Hamiltonian simulation, a similar benchmarking metric called the System Linear Cross Entropy Score (sXES) holds firm in light of the aforementioned negative result due to its fundamental distinction with Linear XEB. Moreover, the hardness of spoofing sXES complexity-theoretically rests on the System Linear Cross-Entropy Quantum Threshold Assumption (sXQUATH), the formal relationship of which to XQUATH is unclear. Despite the promises that sXES offers for future demonstration of quantum supremacy, in this work we show that it is an unsound benchmarking metric. Particularly, we prove that sXQUATH does not hold for sublinear depth circuits and present a classical algorithm that spoofs sXES for experiments corrupted with noise larger than certain threshold.

One of the most important processing steps in any analysis pipeline is handling missing data. Traditional approaches simply delete any sample or feature with missing elements. Recent imputation methods replace missing data based on assumed relationships between observed data and the missing elements. However, there is a largely under-explored alternative amid these extremes. Partial deletion approaches remove excessive amounts of missing data, as defined by the user. They can be used in place of traditional deletion or as a precursor to imputation. In this manuscript, we expand upon the Mr. Clean suite of algorithms, focusing on the scenario where all missing data is removed. We show that the RowCol Integer Program can be recast as a Linear Program, thereby reducing runtime. Additionally, the Element Integer Program can be reformulated to reduce the number of variables and allow for high levels of parallelization. Using real-world data sets from genetic, gene expression, and single cell RNA-seq experiments we demonstrate that our algorithms outperform existing deletion techniques over several missingness values, balancing runtime and data retention. Our combined greedy algorithm retains the maximum number of valid elements in 126 of 150 scenarios and stays within 1\% of maximum in 23 of the remaining experiments. The reformulated Element IP complements the greedy algorithm when removing all missing data, boasting a reduced runtime and increase in valid elements in larger data sets, over its generic counterpart. These two programs greatly increase the amount of valid data retained over traditional deletion techniques and further improve on existing partial deletion algorithms.

Spatial join processing techniques that identify intersections between complex geometries (e.g.,polygons) commonly follow a two-step filter-and-refine pipeline; the filter step evaluates the query predicate on the minimum bounding rectangles (MBRs) of objects and the refinement step eliminates false positives by applying the query on the exact geometries. We propose a raster intervals approximation of object geometries and introduce a powerful intermediate step in pipeline. In a preprocessing phase, our method (i) rasterizes each object geometry using a fine grid, (ii) models groups of nearby cells that intersect the polygon as an interval, and (iii) encodes each interval by a bitstring that captures the overlap of each cell in it with the polygon. Going one step further, we improve our approach to approximate each object by two sets of intervals that succintly capture the raster cells which (i) intersect with the object and (ii) are fully contained in the object. Using this representation, we show that we can verify whether two polygons intersect by a sequence of joins between the interval sets that take linear time. Our approximations can effectively be compressed and can be customized for use on partitioned data and polygons of varying sizes, rasterized at different granularities. Finally, we propose a novel algorithm that computes the interval approximation of a polygon without fully rasterizing it first, rendering the computation of approximations orders of magnitude faster. Experiments on real data demonstrate the effectiveness and efficiency of our proposal over previous work.

Deep learning-based methods have achieved prestigious performance for magnetic resonance imaging (MRI) reconstruction, enabling fast imaging for many clinical applications. Previous methods employ convolutional networks to learn the image prior as the regularization term. In quantitative MRI, the physical model of nuclear magnetic resonance relaxometry is known, providing additional prior knowledge for image reconstruction. However, traditional reconstruction networks are limited to learning the spatial domain prior knowledge, ignoring the relaxometry prior. Therefore, we propose a relaxometry-guided quantitative MRI reconstruction framework to learn the spatial prior from data and the relaxometry prior from MRI physics. Additionally, we also evaluated the performance of two popular reconstruction backbones, namely, recurrent variational networks (RVN) and variational networks (VN) with U- Net. Experiments demonstrate that the proposed method achieves highly promising results in quantitative MRI reconstruction.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.

北京阿比特科技有限公司