亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have achieved tremendous progress, yet they still often struggle with challenging reasoning problems. Current approaches address this challenge by sampling or searching detailed and low-level reasoning chains. However, these methods are still limited in their exploration capabilities, making it challenging for correct solutions to stand out in the huge solution space. In this work, we unleash LLMs' creative potential for exploring multiple diverse problem solving strategies by framing an LLM as a hierarchical policy via in-context learning. This policy comprises of a visionary leader that proposes multiple diverse high-level problem-solving tactics as hints, accompanied by a follower that executes detailed problem-solving processes following each of the high-level instruction. The follower uses each of the leader's directives as a guide and samples multiple reasoning chains to tackle the problem, generating a solution group for each leader proposal. Additionally, we propose an effective and efficient tournament-based approach to select among these explored solution groups to reach the final answer. Our approach produces meaningful and inspiring hints, enhances problem-solving strategy exploration, and improves the final answer accuracy on challenging problems in the MATH dataset. Code will be released at //github.com/lz1oceani/LLM-As-Hierarchical-Policy.

相關內容

Despite the remarkable empirical successes of Generative Adversarial Networks (GANs), the theoretical guarantees for their statistical accuracy remain rather pessimistic. In particular, the data distributions on which GANs are applied, such as natural images, are often hypothesized to have an intrinsic low-dimensional structure in a typically high-dimensional feature space, but this is often not reflected in the derived rates in the state-of-the-art analyses. In this paper, we attempt to bridge the gap between the theory and practice of GANs and their bidirectional variant, Bi-directional GANs (BiGANs), by deriving statistical guarantees on the estimated densities in terms of the intrinsic dimension of the data and the latent space. We analytically show that if one has access to $n$ samples from the unknown target distribution and the network architectures are properly chosen, the expected Wasserstein-1 distance of the estimates from the target scales as $O\left( n^{-1/d_\mu } \right)$ for GANs and $O\left( n^{-1/(d_\mu+\ell)} \right)$ for BiGANs, where $d_\mu$ and $\ell$ are the upper Wasserstein-1 dimension of the data-distribution and latent-space dimension, respectively. The theoretical analyses not only suggest that these methods successfully avoid the curse of dimensionality, in the sense that the exponent of $n$ in the error rates does not depend on the data dimension but also serve to bridge the gap between the theoretical analyses of GANs and the known sharp rates from optimal transport literature. Additionally, we demonstrate that GANs can effectively achieve the minimax optimal rate even for non-smooth underlying distributions, with the use of larger generator networks.

In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. In this work, we propose the idea of programming problem merging (PPM) and provide two implementation of this idea, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines.

Non-stationary signals are ubiquitous in real life. Many techniques have been proposed in the last decades which allow decomposing multi-component signals into simple oscillatory mono-components, like the groundbreaking Empirical Mode Decomposition technique and the Iterative Filtering method. When a signal contains mono-components that have rapid varying instantaneous frequencies, we can think, for instance, to chirps or whistles, it becomes particularly hard for most techniques to properly factor out these components. The Adaptive Local Iterative Filtering technique has recently gained interest in many applied fields of research for being able to deal with non-stationary signals presenting amplitude and frequency modulation. In this work, we address the open question of how to guarantee a priori convergence of this technique, and propose two new algorithms. The first method, called Stable Adaptive Local Iterative Filtering, is a stabilized version of the Adaptive Local Iterative Filtering that we prove to be always convergent. The stability, however, comes at the cost of higher complexity in the calculations. The second technique, called Resampled Iterative Filtering, is a new generalization of the Iterative Filtering method. We prove that Resampled Iterative Filtering is guaranteed to converge a priori for any kind of signal. Furthermore, in the discrete setting, by leveraging on the mathematical properties of the matrices involved, we show that its calculations can be accelerated drastically. Finally, we present some artificial and real-life examples to show the powerfulness and performance of the proposed methods.

Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{//github.com/Namco0816/ProxyQA}.

Cognitive processes undergo various fluctuations and transient states across different temporal scales. Superstatistics are emerging as a flexible framework for incorporating such non-stationary dynamics into existing cognitive model classes. In this work, we provide the first experimental validation of superstatistics and formal comparison of four non-stationary diffusion decision models in a specifically designed perceptual decision-making task. Task difficulty and speed-accuracy trade-off were systematically manipulated to induce expected changes in model parameters. To validate our models, we assess whether the inferred parameter trajectories align with the patterns and sequences of the experimental manipulations. To address computational challenges, we present novel deep learning techniques for amortized Bayesian estimation and comparison of models with time-varying parameters. Our findings indicate that transition models incorporating both gradual and abrupt parameter shifts provide the best fit to the empirical data. Moreover, we find that the inferred parameter trajectories closely mirror the sequence of experimental manipulations. Posterior re-simulations further underscore the ability of the models to faithfully reproduce critical data patterns. Accordingly, our results suggest that the inferred non-stationary dynamics may reflect actual changes in the targeted psychological constructs. We argue that our initial experimental validation paves the way for the widespread application of superstatistics in cognitive modeling and beyond.

We propose Masked-Attention Transformers for Surgical Instrument Segmentation (MATIS), a two-stage, fully transformer-based method that leverages modern pixel-wise attention mechanisms for instrument segmentation. MATIS exploits the instance-level nature of the task by employing a masked attention module that generates and classifies a set of fine instrument region proposals. Our method incorporates long-term video-level information through video transformers to improve temporal consistency and enhance mask classification. We validate our approach in the two standard public benchmarks, Endovis 2017 and Endovis 2018. Our experiments demonstrate that MATIS' per-frame baseline outperforms previous state-of-the-art methods and that including our temporal consistency module boosts our model's performance further.

Over the last decade, researchers have extensively explored the vulnerabilities of Android malware detectors to adversarial examples through the development of evasion attacks; however, the practicality of these attacks in real-world scenarios remains arguable. The majority of studies have assumed attackers know the details of the target classifiers used for malware detection, while in reality, malicious actors have limited access to the target classifiers. This paper introduces EvadeDroid, a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios. EvadeDroid constructs a collection of problem-space transformations derived from benign donors that share opcode-level similarity with malware apps by leveraging an n-gram-based approach. These transformations are then used to morph malware instances into benign ones via an iterative and incremental manipulation strategy. The proposed manipulation technique is a query-efficient optimization algorithm that can find and inject optimal sequences of transformations into malware apps. Our empirical evaluations, carried out on 1K malware apps, demonstrate the effectiveness of our approach in generating real-world adversarial examples in both soft- and hard-label settings. Our findings reveal that EvadeDroid can effectively deceive diverse malware detectors that utilize different features with various feature types. Specifically, EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries. Furthermore, we show that the proposed problem-space adversarial attack is able to preserve its stealthiness against five popular commercial antiviruses with an average of 79% evasion rate, thus demonstrating its feasibility in the real world.

Weakly-supervised segmentation (WSS) has emerged as a solution to mitigate the conflict between annotation cost and model performance by adopting sparse annotation formats (e.g., point, scribble, block, etc.). Typical approaches attempt to exploit anatomy and topology priors to directly expand sparse annotations into pseudo-labels. However, due to a lack of attention to the ambiguous edges in medical images and insufficient exploration of sparse supervision, existing approaches tend to generate erroneous and overconfident pseudo proposals in noisy regions, leading to cumulative model error and performance degradation. In this work, we propose a novel WSS approach, named ProCNS, encompassing two synergistic modules devised with the principles of progressive prototype calibration and noise suppression. Specifically, we design a Prototype-based Regional Spatial Affinity (PRSA) loss to maximize the pair-wise affinities between spatial and semantic elements, providing our model of interest with more reliable guidance. The affinities are derived from the input images and the prototype-refined predictions. Meanwhile, we propose an Adaptive Noise Perception and Masking (ANPM) module to obtain more enriched and representative prototype representations, which adaptively identifies and masks noisy regions within the pseudo proposals, reducing potential erroneous interference during prototype computation. Furthermore, we generate specialized soft pseudo-labels for the noisy regions identified by ANPM, providing supplementary supervision. Extensive experiments on three medical image segmentation tasks involving different modalities demonstrate that the proposed framework significantly outperforms representative state-of-the-art methods

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司