亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A key task in actuarial modelling involves modelling the distributional properties of losses. Classic (distributional) regression approaches like Generalized Linear Models (GLMs; Nelder and Wedderburn, 1972) are commonly used, but challenges remain in developing models that can (i) allow covariates to flexibly impact different aspects of the conditional distribution, (ii) integrate developments in machine learning and AI to maximise the predictive power while considering (i), and, (iii) maintain a level of interpretability in the model to enhance trust in the model and its outputs, which is often compromised in efforts pursuing (i) and (ii). We tackle this problem by proposing a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model (such as GLMs) with a flexible neural network-a modified Deep Distribution Regression (DDR; Li et al., 2019) method. Inspired by the Combined Actuarial Neural Network (CANN; Schelldorfer and W{\''u}thrich, 2019), our approach flexibly refines the entire baseline distribution. As a result, the DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability. Using both synthetic and real-world data, we demonstrate the DRN's superior distributional forecasting capacity. The DRN has the potential to be a powerful distributional regression model in actuarial science and beyond.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 獎勵函數 · 泛函 · Engineering · 控制器 ·
2024 年 7 月 16 日

Learning a locomotion controller for a musculoskeletal system is challenging due to over-actuation and high-dimensional action space. While many reinforcement learning methods attempt to address this issue, they often struggle to learn human-like gaits because of the complexity involved in engineering an effective reward function. In this paper, we demonstrate that adversarial imitation learning can address this issue by analyzing key problems and providing solutions using both current literature and novel techniques. We validate our methodology by learning walking and running gaits on a simulated humanoid model with 16 degrees of freedom and 92 Muscle-Tendon Units, achieving natural-looking gaits with only a few demonstrations.

We study the following refinement relation between nondeterministic state-transition models: model B strategically dominates model A iff every deterministic refinement of A is language contained in some deterministic refinement of B. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between A and B: every strategy that resolves the nondeterminism of A is dominated by a strategy that resolves the nondeterminism of B. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Elliptical slice sampling, when adapted to linearly truncated multivariate normal distributions, is a rejection-free Markov chain Monte Carlo method. At its core, it requires analytically constructing an ellipse-polytope intersection. The main novelty of this paper is an algorithm that computes this intersection in $\mathcal{O}(m \log m)$ time, where $m$ is the number of linear inequality constraints representing the polytope. We show that an implementation based on this algorithm enhances numerical stability, speeds up running time, and is easy to parallelize for launching multiple Markov chains.

In high-dimensional time series, the component processes are often assembled into a matrix to display their interrelationship. We focus on detecting mean shifts with unknown change point locations in these matrix time series. Series that are activated by a change may cluster along certain rows (columns), which forms mode-specific change point alignment. Leveraging mode-specific change point alignments may substantially enhance the power for change point detection. Yet, there may be no mode-specific alignments in the change point structure. We propose a powerful test to detect mode-specific change points, yet robust to non-mode-specific changes. We show the validity of using the multiplier bootstrap to compute the p-value of the proposed methods, and derive non-asymptotic bounds on the size and power of the tests. We also propose a parallel bootstrap, a computationally efficient approach for computing the p-value of the proposed adaptive test. In particular, we show the consistency of the proposed test, under mild regularity conditions. To obtain the theoretical results, we derive new, sharp bounds on Gaussian approximation and multiplier bootstrap approximation, which are of independent interest for high dimensional problems with diverging sparsity.

The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective. First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

北京阿比特科技有限公司