亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model predictive control (MPC) is a powerful framework for optimal control of dynamical systems. However, MPC solvers suffer from a high computational burden that restricts their application to systems with low sampling frequency. This issue is further amplified in nonlinear and constrained systems that require nesting MPC solvers within iterative procedures. In this paper, we address these issues by developing parallel-in-time algorithms for constrained nonlinear optimization problems that take advantage of massively parallel hardware to achieve logarithmic computational time scaling over the planning horizon. We develop time-parallel second-order solvers based on interior point methods and the alternating direction method of multipliers, leveraging fast convergence and lower computational cost per iteration. The parallelization is based on a reformulation of the subproblems in terms of associative operations that can be parallelized using the associative scan algorithm. We validate our approach on numerical examples of nonlinear and constrained dynamical systems.

相關內容

This paper studies the device activity detection problem in a massive multiple-input multiple-output (MIMO) system for near-field communications (NFC). In this system, active devices transmit their signature sequences to the base station (BS), which detects the active devices based on the received signal. In this paper, we model the near-field channels as correlated Rician fading channels and formulate the device activity detection problem as a maximum likelihood estimation (MLE) problem. Compared to the traditional uncorrelated channel model, the correlation of channels complicates both algorithm design and theoretical analysis of the MLE problem. On the algorithmic side, we propose two computationally efficient algorithms for solving the MLE problem: an exact coordinate descent (CD) algorithm and an inexact CD algorithm. The exact CD algorithm solves the one-dimensional optimization subproblem exactly using matrix eigenvalue decomposition and polynomial root-finding. By approximating the objective function appropriately, the inexact CD algorithm solves the one-dimensional optimization subproblem inexactly with lower complexity and more robust numerical performance. Additionally, we analyze the detection performance of the MLE problem under correlated channels by comparing it with the case of uncorrelated channels. The analysis shows that when the overall number of devices $N$ is large or the signature sequence length $L$ is small, the detection performance of MLE under correlated channels tends to be better than that under uncorrelated channels. Conversely, when $N$ is small or $L$ is large, MLE performs better under uncorrelated channels than under correlated ones. Simulation results demonstrate the computational efficiency of the proposed algorithms and verify the correctness of the analysis.

Iterative solvers are frequently used in scientific applications and engineering computations. However, the memory-bound Sparse Matrix-Vector (SpMV) kernel computation hinders the efficiency of iterative algorithms. As modern hardware increasingly supports low-precision computation, the mixed-precision optimization of iterative algorithms has garnered widespread attention. Nevertheless, existing mixed-precision methods pose challenges, including format conversion overhead, tight coupling between storage and computation representation, and the need to store multiple precision copies of data. This paper proposes a floating-point representation based on the group-shared exponent and segmented storage of the mantissa, enabling higher bit utilization of the representation vector and fast switches between different precisions without needing multiple data copies. Furthermore, a stepped mixed-precision iterative algorithm is proposed. Our experimental results demonstrate that, compared with existing floating-point formats, our approach significantly improves iterative algorithms' performance and convergence residuals.

Artificial Intelligence (AI) research often aims to develop models that can generalize reliably across complex datasets, yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize one of the most demanding structured datasets: Malicious Network Traffic. Our approach uniquely transforms numerical data into text, re-framing data generation as a language modeling task, which not only enhances data regularization but also significantly improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights into its role across various domains. Our code and pre-trained models are openly accessible at Github, enabling further exploration and application of our methodology. Index Terms: Data synthesis, machine learning, traffic generation, privacy preserving data, generative models.

In-Context Learning (ICL) is a phenomenon where task learning occurs through a prompt sequence without the necessity of parameter updates. ICL in Multi-Headed Attention (MHA) with absolute positional embedding has been the focus of more study than other sequence model varieties. We examine implications of architectural differences between GPT-2 and LLaMa as well as LlaMa and Mamba. We extend work done by Garg et al. (2022) and Park et al. (2024) to GPT-2/LLaMa hybrid and LLaMa/Mamba hybrid models - examining the interplay between sequence transformation blocks and regressive performance in-context. We note that certain architectural changes cause degraded training efficiency/ICL accuracy by converging to suboptimal predictors or converging slower. We also find certain hybrids showing optimistic performance improvements, informing potential future ICL-focused architecture modifications. Additionally, we propose the "ICL regression score", a scalar metric describing a model's whole performance on a specific task. Compute limitations impose restrictions on our architecture-space, training duration, number of training runs, function class complexity, and benchmark complexity. To foster reproducible and extensible research, we provide a typed, modular, and extensible Python package on which we run all experiments.

Traffic flow forecasting is a crucial task in intelligent transport systems. Deep learning offers an effective solution, capturing complex patterns in time-series traffic flow data to enable the accurate prediction. However, deep learning models are prone to overfitting the intricate details of flow data, leading to poor generalisation. Recent studies suggest that decomposition-based deep ensemble learning methods may address this issue by breaking down a time series into multiple simpler signals, upon which deep learning models are built and ensembled to generate the final prediction. However, few studies have compared the performance of decomposition-based ensemble methods with non-decomposition-based ones which directly utilise raw time-series data. This work compares several decomposition-based and non-decomposition-based deep ensemble learning methods. Experimental results on three traffic datasets demonstrate the superiority of decomposition-based ensemble methods, while also revealing their sensitivity to aggregation strategies and forecasting horizons.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司