We present SHRED, a method for 3D SHape REgion Decomposition. SHRED takes a 3D point cloud as input and uses learned local operations to produce a segmentation that approximates fine-grained part instances. We endow SHRED with three decomposition operations: splitting regions, fixing the boundaries between regions, and merging regions together. Modules are trained independently and locally, allowing SHRED to generate high-quality segmentations for categories not seen during training. We train and evaluate SHRED with fine-grained segmentations from PartNet; using its merge-threshold hyperparameter, we show that SHRED produces segmentations that better respect ground-truth annotations compared with baseline methods, at any desired decomposition granularity. Finally, we demonstrate that SHRED is useful for downstream applications, out-performing all baselines on zero-shot fine-grained part instance segmentation and few-shot fine-grained semantic segmentation when combined with methods that learn to label shape regions.
While there have been increased researches using deep learning techniques for the extraction of vascular structure from the 2D en face OCTA, for such approach, it is known that the data annotation process on the curvilinear structure like the retinal vasculature is very costly and time consuming, albeit few tried to address the annotation problem. In this work, we propose the application of the scribble-base weakly-supervised learning method to automate the pixel-level annotation. The proposed method, called OCTAve, combines the weakly-supervised learning using scribble-annotated ground truth augmented with an adversarial and a novel self-supervised deep supervision. Our novel mechanism is designed to utilize the discriminative outputs from the discrimination layer of a UNet-like architecture where the Kullback-Liebler Divergence between the aggregate discriminative outputs and the segmentation map predicate is minimized during the training. This combined method leads to the better localization of the vascular structure as shown in our experiments. We validate our proposed method on the large public datasets i.e., ROSE, OCTA-500. The segmentation performance is compared against both state-of-the-art fully-supervised and scribble-based weakly-supervised approaches. The implementation of our work used in the experiments is located at [LINK].
Adverse weather conditions can negatively affect LiDAR-based object detectors. In this work, we focus on the phenomenon of vehicle gas exhaust condensation in cold weather conditions. This everyday effect can influence the estimation of object sizes, orientations and introduce ghost object detections, compromising the reliability of the state of the art object detectors. We propose to solve this problem by using data augmentation and a novel training loss term. To effectively train deep neural networks, a large set of labeled data is needed. In case of adverse weather conditions, this process can be extremely laborious and expensive. We address this issue in two steps: First, we present a gas exhaust data generation method based on 3D surface reconstruction and sampling which allows us to generate large sets of gas exhaust clouds from a small pool of labeled data. Second, we introduce a point cloud augmentation process that can be used to add gas exhaust to datasets recorded in good weather conditions. Finally, we formulate a new training loss term that leverages the augmented point cloud to increase object detection robustness by penalizing predictions that include noise. In contrast to other works, our method can be used with both grid-based and point-based detectors. Moreover, since our approach does not require any network architecture changes, inference times remain unchanged. Experimental results on real data show that our proposed method greatly increases robustness to gas exhaust and noisy data.
Approaches for single-view reconstruction typically rely on viewpoint annotations, silhouettes, the absence of background, multiple views of the same instance, a template shape, or symmetry. We avoid all such supervision and assumptions by explicitly leveraging the consistency between images of different object instances. As a result, our method can learn from large collections of unlabelled images depicting the same object category. Our main contributions are two ways for leveraging cross-instance consistency: (i) progressive conditioning, a training strategy to gradually specialize the model from category to instances in a curriculum learning fashion; and (ii) neighbor reconstruction, a loss enforcing consistency between instances having similar shape or texture. Also critical to the success of our method are: our structured autoencoding architecture decomposing an image into explicit shape, texture, pose, and background; an adapted formulation of differential rendering; and a new optimization scheme alternating between 3D and pose learning. We compare our approach, UNICORN, both on the diverse synthetic ShapeNet dataset - the classical benchmark for methods requiring multiple views as supervision - and on standard real-image benchmarks (Pascal3D+ Car, CUB) for which most methods require known templates and silhouette annotations. We also showcase applicability to more challenging real-world collections (CompCars, LSUN), where silhouettes are not available and images are not cropped around the object.
In the field of 3D perception using 3D LiDAR sensors, ground segmentation is an essential task for various purposes, such as traversable area detection and object recognition. Under these circumstances, several ground segmentation methods have been proposed. However, some limitations are still encountered. First, some ground segmentation methods require fine-tuning of parameters depending on the surroundings, which is excessively laborious and time-consuming. Moreover, even if the parameters are well adjusted, a partial under-segmentation problem can still emerge, which implies ground segmentation failures in some regions. Finally, ground segmentation methods typically fail to estimate an appropriate ground plane when the ground is above another structure, such as a retaining wall. To address these problems, we propose a robust ground segmentation method called Patchwork++, an extension of Patchwork. Patchwork++ exploits adaptive ground likelihood estimation (A-GLE) to calculate appropriate parameters adaptively based on the previous ground segmentation results. Moreover, temporal ground revert (TGR) alleviates a partial under-segmentation problem by using the temporary ground property. Also, region-wise vertical plane fitting (R-VPF) is introduced to segment the ground plane properly even if the ground is elevated with different layers. Finally, we present reflected noise removal (RNR) to eliminate virtual noise points efficiently based on the 3D LiDAR reflection model. We demonstrate the qualitative and quantitative evaluations using a SemanticKITTI dataset. Our code is available at //github.com/url-kaist/patchwork-plusplus
Very recently neural implicit rendering techniques have been rapidly evolved and shown great advantages in novel view synthesis and 3D scene reconstruction. However, existing neural rendering methods for editing purposes offer limited functionality, e.g., rigid transformation, or not applicable for fine-grained editing for general objects from daily lives. In this paper, we present a novel mesh-based representation by encoding the neural implicit field with disentangled geometry and texture codes on mesh vertices, which facilitates a set of editing functionalities, including mesh-guided geometry editing, designated texture editing with texture swapping, filling and painting operations. To this end, we develop several techniques including learnable sign indicators to magnify spatial distinguishability of mesh-based representation, distillation and fine-tuning mechanism to make a steady convergence, and the spatial-aware optimization strategy to realize precise texture editing. Extensive experiments and editing examples on both real and synthetic data demonstrate the superiority of our method on representation quality and editing ability. Code is available on the project webpage: //zju3dv.github.io/neumesh/.
While camera and LiDAR are widely used in most of the assisted and autonomous driving systems, only a few works have been proposed to associate the temporal synchronization and extrinsic calibration for camera and LiDAR which are dedicated to online sensors data fusion. The temporal and spatial calibration technologies are facing the challenges of lack of relevance and real-time. In this paper, we introduce the pose estimation model and environmental robust line features extraction to improve the relevance of data fusion and instant online ability of correction. Dynamic targets eliminating aims to seek optimal policy considering the correspondence of point cloud matching between adjacent moments. The searching optimization process aims to provide accurate parameters with both computation accuracy and efficiency. To demonstrate the benefits of this method, we evaluate it on the KITTI benchmark with ground truth value. In online experiments, our approach improves the accuracy by 38.5\% than the soft synchronization method in temporal calibration. While in spatial calibration, our approach automatically corrects disturbance errors within 0.4 second and achieves an accuracy of 0.3-degree. This work can promote the research and application of sensor fusion.
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.