Image guidance is an effective strategy for depth super-resolution. Generally, most existing methods employ hand-crafted operators to decompose the high-frequency (HF) and low-frequency (LF) ingredients from low-resolution depth maps and guide the HF ingredients by directly concatenating them with image features. However, the hand-designed operators usually cause inferior HF maps (e.g., distorted or structurally missing) due to the diverse appearance of complex depth maps. Moreover, the direct concatenation often results in weak guidance because not all image features have a positive effect on the HF maps. In this paper, we develop a recurrent structure attention guided (RSAG) framework, consisting of two important parts. First, we introduce a deep contrastive network with multi-scale filters for adaptive frequency-domain separation, which adopts contrastive networks from large filters to small ones to calculate the pixel contrasts for adaptive high-quality HF predictions. Second, instead of the coarse concatenation guidance, we propose a recurrent structure attention block, which iteratively utilizes the latest depth estimation and the image features to jointly select clear patterns and boundaries, aiming at providing refined guidance for accurate depth recovery. In addition, we fuse the features of HF maps to enhance the edge structures in the decomposed LF maps. Extensive experiments show that our approach obtains superior performance compared with state-of-the-art depth super-resolution methods.
We present a method for fast 3D reconstruction and real-time rendering of dynamic humans from monocular videos with accompanying parametric body fits. Our method can reconstruct a dynamic human in less than 3h using a single GPU, compared to recent state-of-the-art alternatives that take up to 72h. These speedups are obtained by using a lightweight deformation model solely based on linear blend skinning, and an efficient factorized volumetric representation for modeling the shape and color of the person in canonical pose. Moreover, we propose a novel local ray marching rendering which, by exploiting standard GPU hardware and without any baking or conversion of the radiance field, allows visualizing the neural human on a mobile VR device at 40 frames per second with minimal loss of visual quality. Our experimental evaluation shows superior or competitive results with state-of-the art methods while obtaining large training speedup, using a simple model, and achieving real-time rendering.
Lightweight neural networks for single-image super-resolution (SISR) tasks have made substantial breakthroughs in recent years. Compared to low-frequency information, high-frequency detail is much more difficult to reconstruct. Most SISR models allocate equal computational resources for low-frequency and high-frequency information, which leads to redundant processing of simple low-frequency information and inadequate recovery of more challenging high-frequency information. We propose a novel High-Frequency Focused Network (HFFN) through High-Frequency Focused Blocks (HFFBs) that selectively enhance high-frequency information while minimizing redundant feature computation of low-frequency information. The HFFB effectively allocates more computational resources to the more challenging reconstruction of high-frequency information. Moreover, we propose a Local Feature Fusion Block (LFFB) effectively fuses features from multiple HFFBs in a local region, utilizing complementary information across layers to enhance feature representativeness and reduce artifacts in reconstructed images. We assess the efficacy of our proposed HFFN on five benchmark datasets and show that it significantly enhances the super-resolution performance of the network. Our experimental results demonstrate state-of-the-art performance in reconstructing high-frequency information while using a low number of parameters.
Gaze tracking is a valuable tool with a broad range of applications in various fields, including medicine, psychology, virtual reality, marketing, and safety. Therefore, it is essential to have gaze tracking software that is cost-efficient and high-performing. Accurately predicting gaze remains a difficult task, particularly in real-world situations where images are affected by motion blur, video compression, and noise. Super-resolution has been shown to improve image quality from a visual perspective. This work examines the usefulness of super-resolution for improving appearance-based gaze tracking. We show that not all SR models preserve the gaze direction. We propose a two-step framework based on SwinIR super-resolution model. The proposed method consistently outperforms the state-of-the-art, particularly in scenarios involving low-resolution or degraded images. Furthermore, we examine the use of super-resolution through the lens of self-supervised learning for gaze prediction. Self-supervised learning aims to learn from unlabelled data to reduce the amount of required labeled data for downstream tasks. We propose a novel architecture called SuperVision by fusing an SR backbone network to a ResNet18 (with some skip connections). The proposed SuperVision method uses 5x less labeled data and yet outperforms, by 15%, the state-of-the-art method of GazeTR which uses 100% of training data.
In the last decade, many deep learning models have been well trained and made a great success in various fields of machine intelligence, especially for computer vision and natural language processing. To better leverage the potential of these well-trained models in intra-domain or cross-domain transfer learning situations, knowledge distillation (KD) and domain adaptation (DA) are proposed and become research highlights. They both aim to transfer useful information from a well-trained model with original training data. However, the original data is not always available in many cases due to privacy, copyright or confidentiality. Recently, the data-free knowledge transfer paradigm has attracted appealing attention as it deals with distilling valuable knowledge from well-trained models without requiring to access to the training data. In particular, it mainly consists of the data-free knowledge distillation (DFKD) and source data-free domain adaptation (SFDA). On the one hand, DFKD aims to transfer the intra-domain knowledge of original data from a cumbersome teacher network to a compact student network for model compression and efficient inference. On the other hand, the goal of SFDA is to reuse the cross-domain knowledge stored in a well-trained source model and adapt it to a target domain. In this paper, we provide a comprehensive survey on data-free knowledge transfer from the perspectives of knowledge distillation and unsupervised domain adaptation, to help readers have a better understanding of the current research status and ideas. Applications and challenges of the two areas are briefly reviewed, respectively. Furthermore, we provide some insights to the subject of future research.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.