The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in Second Affiliated Hospital of Dalian Medical University (SAHDMU). We select the optimal 38 features through a Least absolute shrinkage and selection operator (LASSO) regression model and a 10-fold cross-validation. We compare four machine learning algorithms, including eXtreme Gradient Boosting (XGB), random forest, decision tree and logistic regression, by AUC-ROC curves, decision curves, calibration curves. We quantify feature importance and interaction effects in the optimal predictive model by Shapley Additive exPlanations (SHAP) method. The XGB model has the best performance to screen for DN with the highest AUC value of 0.966. The XGB model also gains more clinical net benefits than others and the fitting degree is better. In addition, there are significant interactions between serum metabolites and duration of diabetes. We develop a predictive model by XGB algorithm to screen for DN. C2, C5DC, Tyr, Ser, Met, C24, C4DC, and Cys have great contribution in the model, and can possibly be biomarkers for DN.
Model reduction is the construction of simple yet predictive descriptions of the dynamics of many-body systems in terms of a few relevant variables. A prerequisite to model reduction is the identification of these relevant variables, a task for which no general method exists. Here, we develop a systematic approach based on the information bottleneck to identify the relevant variables, defined as those most predictive of the future. We elucidate analytically the relation between these relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further, we show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally stop increasing the complexity of the reduced model. Further, it provides a firm foundation to construct interpretable deep learning tools that perform model reduction. We illustrate how these tools work on benchmark dynamical systems and deploy them on uncurated datasets, such as satellite movies of atmospheric flows downloaded directly from YouTube.
Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.
Individual trajectories, rich in human-environment interaction information across space and time, serve as vital inputs for geospatial foundation models (GeoFMs). However, existing attempts at learning trajectory representations have overlooked the implicit spatial-temporal dependency within trajectories, failing to encode such dependency in a deep learning-friendly format. That poses a challenge in obtaining general-purpose trajectory representations. Therefore, this paper proposes a spatial-temporal joint representation learning method (ST-GraphRL) to formalize learnable spatial-temporal dependencies into trajectory representations. The proposed ST-GraphRL consists of three compositions: (i) a weighted directed spatial-temporal graph to explicitly construct mobility interactions in both space and time dimensions; (ii) a two-stage jointly encoder (i.e., decoupling and fusion), to learn entangled spatial-temporal dependencies by independently decomposing and jointly aggregating space and time information; (iii) a decoder guides ST-GraphRL to learn explicit mobility regularities by simulating the spatial-temporal distributions of trajectories. Tested on three real-world human mobility datasets, the proposed ST-GraphRL outperformed all the baseline models in predicting movement spatial-temporal distributions and preserving trajectory similarity with high spatial-temporal correlations. Analyzing spatial-temporal features presented in latent space validates that ST-GraphRL understands spatial-temporal patterns. This study may also benefit representation learnings of other geospatial data to achieve general-purpose data representations and advance GeoFMs development.
Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory.
The joint modeling of multiple longitudinal biomarkers together with a time-to-event outcome is a challenging modeling task of continued scientific interest. In particular, the computational complexity of high dimensional (generalized) mixed effects models often restricts the flexibility of shared parameter joint models, even when the subject-specific marker trajectories follow highly nonlinear courses. We propose a parsimonious multivariate functional principal components representation of the shared random effects. This allows better scalability, as the dimension of the random effects does not directly increase with the number of markers, only with the chosen number of principal component basis functions used in the approximation of the random effects. The functional principal component representation additionally allows to estimate highly flexible subject-specific random trajectories without parametric assumptions. The modeled trajectories can thus be distinctly different for each biomarker. We build on the framework of flexible Bayesian additive joint models implemented in the R-package 'bamlss', which also supports estimation of nonlinear covariate effects via Bayesian P-splines. The flexible yet parsimonious functional principal components basis used in the estimation of the joint model is first estimated in a preliminary step. We validate our approach in a simulation study and illustrate its advantages by analyzing a study on primary biliary cholangitis.
This study elaborates a text-based metric to quantify the unique position of stylized scientific research, characterized by its innovative integration of diverse knowledge components and potential to pivot established scientific paradigms. Our analysis reveals a concerning decline in stylized research, highlighted by its comparative undervaluation in terms of citation counts and protracted peer-review duration. Despite facing these challenges, the disruptive potential of stylized research remains robust, consistently introducing groundbreaking questions and theories. This paper posits that substantive reforms are necessary to incentivize and recognize the value of stylized research, including optimizations to the peer-review process and the criteria for evaluating scientific impact. Embracing these changes may be imperative to halt the downturn in stylized research and ensure enduring scholarly exploration in endless frontiers.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.