亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The acquisition of channel state information (CSI) in Frequency Division Duplex (FDD) massive MIMO has been a formidable challenge. In this paper, we address this problem with a novel CSI feedback framework enabled by the partial reciprocity of uplink and downlink channels in the wideband regime. We first derive the closed-form expression of the rank of the wideband massive MIMO channel covariance matrix for a given angle-delay distribution. A low-rankness property is identified, which generalizes the well-known result of the narrow-band uniform linear array setting. Then we propose a partial channel reciprocity (PCR) codebook, inspired by the low-rankness behavior and the fact that the uplink and downlink channels have similar angle-delay distributions. Compared to the latest codebook in 5G, the proposed PCR codebook scheme achieves higher performance, lower complexity at the user side, and requires a smaller amount of feedback. We derive the feedback overhead necessary to achieve asymptotically error-free CSI feedback. Two low-complexity alternatives are also proposed to further reduce the complexity at the base station side. Simulations with the practical 3GPP channel model show the significant gains over the latest 5G codebook, which prove that our proposed methods are practical solutions for 5G and beyond.

相關內容

MIMO spatial multiplexing is an essential feature to increase the communication data rates in current and future cellular systems. Currently, the ns-3 lte module leverages an abstraction model for 2x2 MIMO with spatial multiplexing of two streams; while mmwave and nr modules were lacking the spatial multiplexing option until this work, since the ns-3 models were not supporting the usage of multiple antennas for spatial multiplexing and an abstraction model such as the one used in the lte module is not suitable for the mmWave frequencies. In this paper, we propose, implement and evaluate models for ns-3 and the nr module to enable Dual-Polarized MIMO (DP-MIMO). The proposed extension for the ns-3 supports multiple antennas for DP-MIMO with spatial multiplexing of two streams and can be used by any ns-3 module that is compatible with the ns-3 antenna array-based models, such as nr and mmwave modules. We leverage this ns-3 extension to model DP-MIMO by exploiting dual-polarized antennas and their orthogonality under line-of-sight conditions, as it happens at high-frequency bands, to send the two data streams. The proposed model does not rely on abstraction, as the MIMO model in the ns-3 lte module, and can thus model more realistically the propagation differences of the two streams, correlation, inter-stream interference, and allows design and evaluation of the rank adaptation algorithms. Additionally, we propose and evaluate an adaptive rank adaptation scheme and compare it with a fixed scheme. The developed DP-MIMO spatial multiplexing models for the ns-3 simulator and the nr module are openly available.

We present a method to simulate movement in interaction with computers, using Model Predictive Control (MPC). The method starts from understanding interaction from an Optimal Feedback Control (OFC) perspective. We assume that users aim to minimize an internalized cost function, subject to the constraints imposed by the human body and the interactive system. In contrast to previous linear approaches used in HCI, MPC can compute optimal controls for nonlinear systems. This allows us to use state-of-the-art biomechanical models and handle nonlinearities that occur in almost any interactive system. Instead of torque actuation, our model employs second-order muscles acting directly at the joints. We compare three different cost functions and evaluate the simulated trajectories against user movements in a Fitts' Law type pointing study with four different interaction techniques. Our results show that the combination of distance, control, and joint acceleration cost matches individual users' movements best, and predicts movements with an accuracy that is within the between-user variance. To aid HCI researchers and designers, we introduce CFAT, a novel method to identify maximum voluntary torques in joint-actuated models based on experimental data, and give practical advice on how to simulate human movement for different users, interaction techniques, and tasks.

Fuzzing is one of the most effective approaches to finding software flaws. However, applying it to microcontroller firmware incurs many challenges. For example, rehosting-based solutions cannot accurately model peripheral behaviors and thus cannot be used to fuzz the corresponding driver code. In this work, we present $\mu$AFL, a hardware-in-the-loop approach to fuzzing microcontroller firmware. It leverages debugging tools in existing embedded system development to construct an AFL-compatible fuzzing framework. Specifically, we use the debug dongle to bridge the fuzzing environment on the PC and the target firmware on the microcontroller device. To collect code coverage information without costly code instrumentation, $\mu$AFL relies on the ARM ETM hardware debugging feature, which transparently collects the instruction trace and streams the results to the PC. However, the raw ETM data is obscure and needs enormous computing resources to recover the actual instruction flow. We therefore propose an alternative representation of code coverage, which retains the same path sensitivity as the original AFL algorithm, but can directly work on the raw ETM data without matching them with disassembled instructions. To further reduce the workload, we use the DWT hardware feature to selectively collect runtime information of interest. We evaluated $\mu$AFL on two real evaluation boards from two major vendors: NXP and STMicroelectronics. With our prototype, we discovered ten zero-day bugs in the driver code shipped with the SDK of STMicroelectronics and three zero-day bugs in the SDK of NXP. Eight CVEs have been allocated for them. Considering the wide adoption of vendor SDKs in real products, our results are alarming.

Most deep learning models for computational imaging regress a single reconstructed image. In practice, however, ill-posedness, nonlinearity, model mismatch, and noise often conspire to make such point estimates misleading or insufficient. The Bayesian approach models images and (noisy) measurements as jointly distributed random vectors and aims to approximate the posterior distribution of unknowns. Recent variational inference methods based on conditional normalizing flows are a promising alternative to traditional MCMC methods, but they come with drawbacks: excessive memory and compute demands for moderate to high resolution images and underwhelming performance on hard nonlinear problems. In this work, we propose C-Trumpets -- conditional injective flows specifically designed for imaging problems, which greatly diminish these challenges. Injectivity reduces memory footprint and training time while low-dimensional latent space together with architectural innovations like fixed-volume-change layers and skip-connection revnet layers, C-Trumpets outperform regular conditional flow models on a variety of imaging and image restoration tasks, including limited-view CT and nonlinear inverse scattering, with a lower compute and memory budget. C-Trumpets enable fast approximation of point estimates like MMSE or MAP as well as physically-meaningful uncertainty quantification.

We apply a reinforcement meta-learning framework to optimize an integrated and adaptive guidance and flight control system for an air-to-air missile. The system is implemented as a policy that maps navigation system outputs directly to commanded rates of change for the missile's control surface deflections. The system induces intercept trajectories against a maneuvering target that satisfy control constraints on fin deflection angles, and path constraints on look angle and load. We test the optimized system in a six degrees-of-freedom simulator that includes a non-linear radome model and a strapdown seeker model, and demonstrate that the system adapts to both a large flight envelope and off-nominal flight conditions including perturbation of aerodynamic coefficient parameters and center of pressure locations, and flexible body dynamics. Moreover, we find that the system is robust to the parasitic attitude loop induced by radome refraction and imperfect seeker stabilization. We compare our system's performance to a longitudinal model of proportional navigation coupled with a three loop autopilot, and find that our system outperforms this benchmark by a large margin. Additional experiments investigate the impact of removing the recurrent layer from the policy and value function networks, performance with an infrared seeker, and flexible body dynamics.

Hybrid precoding is a cost-efficient technique for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communications. This paper proposes a deep learning approach by using a distributed neural network for hybrid analog-and-digital precoding design with limited feedback. The proposed distributed neural precoding network, called DNet, is committed to achieving two objectives. First, the DNet realizes channel state information (CSI) compression with a distributed architecture of neural networks, which enables practical deployment on multiple users. Specifically, this neural network is composed of multiple independent sub-networks with the same structure and parameters, which reduces both the number of training parameters and network complexity. Secondly, DNet learns the calculation of hybrid precoding from reconstructed CSI from limited feedback. Different from existing black-box neural network design, the DNet is specifically designed according to the data form of the matrix calculation of hybrid precoding. Simulation results show that the proposed DNet significantly improves the performance up to nearly 50% compared to traditional limited feedback precoding methods under the tests with various CSI compression ratios.

In this paper we present a novel method for a naive agent to detect novel objects it encounters in an interaction. We train a reinforcement learning policy on a stacking task given a known object type, and then observe the results of the agent attempting to stack various other objects based on the same trained policy. By extracting embedding vectors from a convolutional neural net trained over the results of the aforementioned stacking play, we can determine the similarity of a given object to known object types, and determine if the given object is likely dissimilar enough to the known types to be considered a novel class of object. We present the results of this method on two datasets gathered using two different policies and demonstrate what information the agent needs to extract from its environment to make these novelty judgments.

Stochastic optimization algorithms implemented on distributed computing architectures are increasingly used to tackle large-scale machine learning applications. A key bottleneck in such distributed systems is the communication overhead for exchanging information such as stochastic gradients between different workers. Sparse communication with memory and the adaptive aggregation methodology are two successful frameworks among the various techniques proposed to address this issue. In this paper, we exploit the advantages of Sparse communication and Adaptive aggregated Stochastic Gradients to design a communication-efficient distributed algorithm named SASG. Specifically, we determine the workers who need to communicate with the parameter server based on the adaptive aggregation rule and then sparsify the transmitted information. Therefore, our algorithm reduces both the overhead of communication rounds and the number of communication bits in the distributed system. We define an auxiliary sequence and provide convergence results of the algorithm with the help of Lyapunov function analysis. Experiments on training deep neural networks show that our algorithm can significantly reduce the communication overhead compared to the previous methods, with little impact on training and testing accuracy.

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.

In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.

北京阿比特科技有限公司