Visual Prompt Tuning (VPT) is an effective tuning method for adapting pretrained Vision Transformers (ViTs) to downstream tasks. It leverages extra learnable tokens, known as prompts, which steer the frozen pretrained ViTs. Although VPT has demonstrated its applicability with supervised vision transformers, it often underperforms with self-supervised ones. Through empirical observations, we deduce that the effectiveness of VPT hinges largely on the ViT blocks with which the prompt tokens interact. Specifically, VPT shows improved performance on image classification tasks for MAE and MoCo v3 when the prompt tokens are inserted into later blocks rather than the first block. These observations suggest that there exists an optimal location of blocks for the insertion of prompt tokens. Unfortunately, identifying the optimal blocks for prompts within each self-supervised ViT for diverse future scenarios is a costly process. To mitigate this problem, we propose a simple yet effective method that learns a gate for each ViT block to adjust its intervention into the prompt tokens. With our method, prompt tokens are selectively influenced by blocks that require steering for task adaptation. Our method outperforms VPT variants in FGVC and VTAB image classification and ADE20K semantic segmentation. The code is available at //github.com/ryongithub/GatedPromptTuning.
Data-free quantization can potentially address data privacy and security concerns in model compression, and thus has been widely investigated. Recently, PSAQ-ViT designs a relative value metric, patch similarity, to generate data from pre-trained vision transformers (ViTs), achieving the first attempt at data-free quantization for ViTs. In this paper, we propose PSAQ-ViT V2, a more accurate and general data-free quantization framework for ViTs, built on top of PSAQ-ViT. More specifically, following the patch similarity metric in PSAQ-ViT, we introduce an adaptive teacher-student strategy, which facilitates the constant cyclic evolution of the generated samples and the quantized model (student) in a competitive and interactive fashion under the supervision of the full-precision model (teacher), thus significantly improving the accuracy of the quantized model. Moreover, without the auxiliary category guidance, we employ the task- and model-independent prior information, making the general-purpose scheme compatible with a broad range of vision tasks and models. Extensive experiments are conducted on various models on image classification, object detection, and semantic segmentation tasks, and PSAQ-ViT V2, with the naive quantization strategy and without access to real-world data, consistently achieves competitive results, showing potential as a powerful baseline on data-free quantization for ViTs. For instance, with Swin-S as the (backbone) model, 8-bit quantization reaches 82.13 top-1 accuracy on ImageNet, 50.9 box AP and 44.1 mask AP on COCO, and 47.2 mIoU on ADE20K. We hope that accurate and general PSAQ-ViT V2 can serve as a potential and practice solution in real-world applications involving sensitive data. Code is released and merged at: //github.com/zkkli/PSAQ-ViT.
DETR-based object detectors have achieved remarkable performance but are sample-inefficient and exhibit slow convergence. Unsupervised pretraining has been found to be helpful to alleviate these impediments, allowing training with large amounts of unlabeled data to improve the detector's performance. However, existing methods have their own limitations, like keeping the detector's backbone frozen in order to avoid performance degradation and utilizing pretraining objectives misaligned with the downstream task. To overcome these limitations, we propose a simple pretraining framework for DETR-based detectors that consists of three simple yet key ingredients: (i) richer, semantics-based initial proposals derived from high-level feature maps, (ii) discriminative training using object pseudo-labels produced via clustering, (iii) self-training to take advantage of the improved object proposals learned by the detector. We report two main findings: (1) Our pretraining outperforms prior DETR pretraining works on both the full and low data regimes by significant margins. (2) We show we can pretrain DETR from scratch (including the backbone) directly on complex image datasets like COCO, paving the path for unsupervised representation learning directly using DETR.
Our research focuses on solving the zero-shot text classification problem in NLP, with a particular emphasis on innovative self-training strategies. To achieve this objective, we propose a novel self-training strategy that uses labels rather than text for training, significantly reducing the model's training time. Specifically, we use categories from Wikipedia as our training set and leverage the SBERT pre-trained model to establish positive correlations between pairs of categories within the same text, facilitating associative training. For new test datasets, we have improved the original self-training approach, eliminating the need for prior training and testing data from each target dataset. Instead, we adopt Wikipedia as a unified training dataset to better approximate the zero-shot scenario. This modification allows for rapid fine-tuning and inference across different datasets, greatly reducing the time required for self-training. Our experimental results demonstrate that this method can adapt the model to the target dataset within minutes. Compared to other BERT-based transformer models, our approach significantly reduces the amount of training data by training only on labels, not the actual text, and greatly improves training efficiency by utilizing a unified training set. Additionally, our method achieves state-of-the-art results on both the Yahoo Topic and AG News datasets.
Formula-driven supervised learning (FDSL) is a pre-training method that relies on synthetic images generated from mathematical formulae such as fractals. Prior work on FDSL has shown that pre-training vision transformers on such synthetic datasets can yield competitive accuracy on a wide range of downstream tasks. These synthetic images are categorized according to the parameters in the mathematical formula that generate them. In the present work, we hypothesize that the process for generating different instances for the same category in FDSL, can be viewed as a form of data augmentation. We validate this hypothesis by replacing the instances with data augmentation, which means we only need a single image per category. Our experiments shows that this one-instance fractal database (OFDB) performs better than the original dataset where instances were explicitly generated. We further scale up OFDB to 21,000 categories and show that it matches, or even surpasses, the model pre-trained on ImageNet-21k in ImageNet-1k fine-tuning. The number of images in OFDB is 21k, whereas ImageNet-21k has 14M. This opens new possibilities for pre-training vision transformers with much smaller datasets.
The recent technology boost of large language models (LLMs) has empowered a variety of applications. However, there is very little research on understanding and improving LLMs' capability for the mental health domain. In this work, we present the first comprehensive evaluation of multiple LLMs, including Alpaca, Alpaca-LoRA, and GPT-3.5, on various mental health prediction tasks via online text data. We conduct a wide range of experiments, covering zero-shot prompting, few-shot prompting, and instruction finetuning. The results indicate the promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned model, Mental-Alpaca, outperforms GPT-3.5 (25 times bigger) by 16.7\% on balanced accuracy and performs on par with the state-of-the-art task-specific model. We summarize our findings into a set of action guidelines for future researchers, engineers, and practitioners on how to empower LLMs with better mental health domain knowledge and become an expert in mental health prediction tasks.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet
Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}