亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Similarity metrics have played a significant role in computer vision to capture the underlying semantics of images. In recent years, advanced similarity metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), have emerged. These metrics leverage deep features extracted from trained neural networks and have demonstrated a remarkable ability to closely align with human perception when evaluating relative image similarity. However, it is now well-known that neural networks are susceptible to adversarial examples, i.e., small perturbations invisible to humans crafted to deliberately mislead the model. Consequently, the LPIPS metric is also sensitive to such adversarial examples. This susceptibility introduces significant security concerns, especially considering the widespread adoption of LPIPS in large-scale applications. In this paper, we propose the Robust Learned Perceptual Image Patch Similarity (R-LPIPS) metric, a new metric that leverages adversarially trained deep features. Through a comprehensive set of experiments, we demonstrate the superiority of R-LPIPS compared to the classical LPIPS metric. The code is available at //github.com/SaraGhazanfari/R-LPIPS.

相關內容

Speech-driven 3D facial animation synthesis has been a challenging task both in industry and research. Recent methods mostly focus on deterministic deep learning methods meaning that given a speech input, the output is always the same. However, in reality, the non-verbal facial cues that reside throughout the face are non-deterministic in nature. In addition, majority of the approaches focus on 3D vertex based datasets and methods that are compatible with existing facial animation pipelines with rigged characters is scarce. To eliminate these issues, we present FaceDiffuser, a non-deterministic deep learning model to generate speech-driven facial animations that is trained with both 3D vertex and blendshape based datasets. Our method is based on the diffusion technique and uses the pre-trained large speech representation model HuBERT to encode the audio input. To the best of our knowledge, we are the first to employ the diffusion method for the task of speech-driven 3D facial animation synthesis. We have run extensive objective and subjective analyses and show that our approach achieves better or comparable results in comparison to the state-of-the-art methods. We also introduce a new in-house dataset that is based on a blendshape based rigged character. We recommend watching the accompanying supplementary video. The code and the dataset will be publicly available.

Coarse-Grained Reconfigurable Arrays (CGRA) are promising edge accelerators due to the outstanding balance in flexibility, performance, and energy efficiency. Classic CGRAs statically map compute operations onto the processing elements (PE) and route the data dependencies among the operations through the Network-on-Chip. However, CGRAs are designed for fine-grained static instruction-level parallelism and struggle to accelerate applications with dynamic and irregular data-level parallelism, such as graph processing. To address this limitation, we present Flip, a novel accelerator that enhances traditional CGRA architectures to boost the performance of graph applications. Flip retains the classic CGRA execution model while introducing a special data-centric mode for efficient graph processing. Specifically, it exploits the natural data parallelism of graph algorithms by mapping graph vertices onto processing elements (PEs) rather than the operations, and supporting dynamic routing of temporary data according to the runtime evolution of the graph frontier. Experimental results demonstrate that Flip achieves up to 36$\times$ speedup with merely 19% more area compared to classic CGRAs. Compared to state-of-the-art large-scale graph processors, Flip has similar energy efficiency and 2.2$\times$ better area efficiency at a much-reduced power/area budget.

Monocular depth estimation has drawn widespread attention from the vision community due to its broad applications. In this paper, we propose a novel physics (geometry)-driven deep learning framework for monocular depth estimation by assuming that 3D scenes are constituted by piece-wise planes. Particularly, we introduce a new normal-distance head that outputs pixel-level surface normal and plane-to-origin distance for deriving depth at each position. Meanwhile, the normal and distance are regularized by a developed plane-aware consistency constraint. We further integrate an additional depth head to improve the robustness of the proposed framework. To fully exploit the strengths of these two heads, we develop an effective contrastive iterative refinement module that refines depth in a complementary manner according to the depth uncertainty. Extensive experiments indicate that the proposed method exceeds previous state-of-the-art competitors on the NYU-Depth-v2, KITTI and SUN RGB-D datasets. Notably, it ranks 1st among all submissions on the KITTI depth prediction online benchmark at the submission time.

Person re-identification (re-ID) requires densely distributed cameras. In practice, the person of interest may not be captured by cameras and, therefore, needs to be retrieved using subjective information (e.g., sketches from witnesses). Previous research defines this case using the sketch as sketch re-identification (Sketch re-ID) and focuses on eliminating the domain gap. Actually, subjectivity is another significant challenge. We model and investigate it by posing a new dataset with multi-witness descriptions. It features two aspects. 1) Large-scale. It contains over 4,763 sketches and 32,668 photos, making it the largest Sketch re-ID dataset. 2) Multi-perspective and multi-style. Our dataset offers multiple sketches for each identity. Witnesses' subjective cognition provides multiple perspectives on the same individual, while different artists' drawing styles provide variation in sketch styles. We further have two novel designs to alleviate the challenge of subjectivity. 1) Fusing subjectivity. We propose a non-local (NL) fusion module that gathers sketches from different witnesses for the same identity. 2) Introducing objectivity. An AttrAlign module utilizes attributes as an implicit mask to align cross-domain features. To push forward the advance of Sketch re-ID, we set three benchmarks (large-scale, multi-style, cross-style). Extensive experiments demonstrate our leading performance in these benchmarks. Dataset and Codes are publicly available at: //github.com/Lin-Kayla/subjectivity-sketch-reid

Recent advances in neural reconstruction using posed image sequences have made remarkable progress. However, due to the lack of depth information, existing volumetric-based techniques simply duplicate 2D image features of the object surface along the entire camera ray. We contend this duplication introduces noise in empty and occluded spaces, posing challenges for producing high-quality 3D geometry. Drawing inspiration from traditional multi-view stereo methods, we propose an end-to-end 3D neural reconstruction framework CVRecon, designed to exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning. Furthermore, we present Ray-contextual Compensated Cost Volume (RCCV), a novel 3D geometric feature representation that encodes view-dependent information with improved integrity and robustness. Through comprehensive experiments, we demonstrate that our approach significantly improves the reconstruction quality in various metrics and recovers clear fine details of the 3D geometries. Our extensive ablation studies provide insights into the development of effective 3D geometric feature learning schemes. Project page: //cvrecon.ziyue.cool/

Robot vision often involves a large computational load due to large images to process in a short amount of time. Existing solutions often involve reducing image quality which can negatively impact processing. Another approach is to generate regions of interest with expensive vision algorithms. In this paper, we evaluate how audio can be used to generate regions of interest in optical images. To achieve this, we propose a unique attention mechanism to localize speech sources and evaluate its impact on a face detection algorithm. Our results show that the attention mechanism reduces the computational load. The proposed pipeline is flexible and can be easily adapted for human-robot interactions, robot surveillance, video-conferences or smart glasses.

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at //github.com/zhoudw-zdw/CIL_Survey/

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司