亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning precise distributions of traffic features (e.g., burst sizes, packet inter-arrival time) is still a largely unsolved problem despite being critical for management tasks such as capacity planning or anomaly detection. A key limitation nowadays is the lack of feedback between the control plane and the data plane. Programmable data planes offer the opportunity to create systems that let data- and control plane to work together, compensating their respective shortcomings. We present FitNets, an adaptive network monitoring system leveraging feedback between the data- and the control plane to learn accurate traffic distributions. In the control plane, FitNets relies on Kernel Density Estimators which allow to provably learn distributions of any shape. In the data plane, FitNets tests the accuracy of the learned distributions while dynamically adapting data collection to the observed distribution fitness, prioritizing under-fitted features. We have implemented FitNets in Python and P4 (including on commercially available programmable switches) and tested it on real and synthetic traffic traces. FitNets is practical: it is able to estimate hundreds of distributions from up to 60 millions samples per second, while providing accurate error estimates and adapting to complex traffic patterns.

相關內容

Certifiable robustness gives the guarantee that small perturbations around an input to a classifier will not change the prediction. There are two approaches to provide certifiable robustness to adversarial examples: a) explicitly training classifiers with small Lipschitz constants, and b) Randomized smoothing, which adds random noise to the input to create a smooth classifier. We propose \textit{SPLITZ}, a practical and novel approach which leverages the synergistic benefits of both the above ideas into a single framework. Our main idea is to \textit{split} a classifier into two halves, constrain the Lipschitz constant of the first half, and smooth the second half via randomization. Motivation for \textit{SPLITZ} comes from the observation that many standard deep networks exhibit heterogeneity in Lipschitz constants across layers. \textit{SPLITZ} can exploit this heterogeneity while inheriting the scalability of randomized smoothing. We present a principled approach to train \textit{SPLITZ} and provide theoretical analysis to derive certified robustness guarantees during inference. We present a comprehensive comparison of robustness-accuracy tradeoffs and show that \textit{SPLITZ} consistently improves upon existing state-of-the-art approaches on MNIST and CIFAR-10 datasets. For instance, with $\ell_2$ norm perturbation budget of \textbf{$\epsilon=1$}, \textit{SPLITZ} achieves $\textbf{43.2\%}$ top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test accuracy $\textbf{39.8\%}

The distribution of keys to a given number of buckets is a fundamental task in distributed data processing and storage. A simple, fast, and therefore popular approach is to map the hash values of keys to buckets based on the remainder after dividing by the number of buckets. Unfortunately, these mappings are not stable when the number of buckets changes, which can lead to severe spikes in system resource utilization, such as network or database requests. Consistent hash algorithms can minimize remappings, but are either significantly slower than the modulo-based approach, require floating-point arithmetic, or are based on a family of hash functions rarely available in standard libraries. This paper introduces JumpBackHash, which uses only integer arithmetic and a standard pseudorandom generator. Due to its speed and simple implementation, it can safely replace the modulo-based approach to improve assignment and system stability. A production-ready Java implementation of JumpBackHash has been released as part of the Hash4j open source library.

Irregular distribution in latent space causes posterior collapse, misalignment between posterior and prior, and ill-sampling problem in Variational Autoencoders (VAEs). In this paper, we introduce a novel adaptable three-stage Uniform Transformation (UT) module -- Gaussian Kernel Density Estimation (G-KDE) clustering, non-parametric Gaussian Mixture (GM) Modeling, and Probability Integral Transform (PIT) -- to address irregular latent distributions. By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations, overcoming the limitation of traditional VAE models in capturing complex data structures. Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets -- dSprites and MNIST. Our findings suggest a promising direction for advancing representation learning techniques, with implication for future research in extending this framework to more sophisticated datasets and downstream tasks.

Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance change, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code will be publicly available on upon acceptance.

Ultra-high-resolution image generation poses great challenges, such as increased semantic planning complexity and detail synthesis difficulties, alongside substantial training resource demands. We present UltraPixel, a novel architecture utilizing cascade diffusion models to generate high-quality images at multiple resolutions (\textit{e.g.}, 1K to 6K) within a single model, while maintaining computational efficiency. UltraPixel leverages semantics-rich representations of lower-resolution images in the later denoising stage to guide the whole generation of highly detailed high-resolution images, significantly reducing complexity. Furthermore, we introduce implicit neural representations for continuous upsampling and scale-aware normalization layers adaptable to various resolutions. Notably, both low- and high-resolution processes are performed in the most compact space, sharing the majority of parameters with less than 3$\%$ additional parameters for high-resolution outputs, largely enhancing training and inference efficiency. Our model achieves fast training with reduced data requirements, producing photo-realistic high-resolution images and demonstrating state-of-the-art performance in extensive experiments.

Deployment of autoregressive large language models (LLMs) is costly, and as these models increase in size, the associated costs will become even more considerable. Consequently, different methods have been proposed to accelerate the token generation process and reduce costs. Speculative decoding (SD) is among the most promising approaches to speed up the LLM decoding process by verifying multiple tokens in parallel and using an auxiliary smaller draft model to generate the possible tokens. In SD, usually, one draft model is used to serve a specific target model; however, in practice, LLMs are diverse, and we might need to deal with many target models or more than one target model simultaneously. In this scenario, it is not clear which draft model should be used for which target model, and searching among different draft models or training customized draft models can further increase deployment costs. In this paper, we first introduce a novel multi-target scenario for the deployment of draft models for faster inference. Then, we present a novel, more efficient sorted speculative decoding mechanism that outperforms regular baselines in multi-target settings. We evaluated our method on Spec-Bench in different settings, including base models such as Vicuna 7B, 13B, and LLama Chat 70B. Our results suggest that our draft models perform better than baselines for multiple target models at the same time.

The development of data-driven approaches for solving differential equations has been followed by a plethora of applications in science and engineering across a multitude of disciplines and remains a central focus of active scientific inquiry. However, a large body of natural phenomena incorporates memory effects that are best described via fractional integro-differential equations (FIDEs), in which the integral or differential operators accept non-integer orders. Addressing the challenges posed by nonlinear FIDEs is a recognized difficulty, necessitating the application of generic methods with immediate practical relevance. This work introduces the Universal Fractional Integro-Differential Equation Solvers (UniFIDES), a comprehensive machine learning platform designed to expeditiously solve a variety of FIDEs in both forward and inverse directions, without the need for ad hoc manipulation of the equations. The effectiveness of UniFIDES is demonstrated through a collection of integer-order and fractional problems in science and engineering. Our results highlight UniFIDES' ability to accurately solve a wide spectrum of integro-differential equations and offer the prospect of using machine learning platforms universally for discovering and describing dynamical and complex systems.

As the parameter size of large language models (LLMs) continues to expand, the need for a large memory footprint and high communication bandwidth have become significant bottlenecks for the training and inference of LLMs. To mitigate these bottlenecks, various tensor compression techniques have been proposed to reduce the data size, thereby alleviating memory requirements and communication pressure. Our research found that video codecs, despite being originally designed for compressing videos, show excellent efficiency when compressing various types of tensors. We demonstrate that video codecs can be versatile and general-purpose tensor codecs while achieving the state-of-the-art compression efficiency in various tasks. We further make use of the hardware video encoding and decoding module available on GPUs to create a framework capable of both inference and training with video codecs repurposed as tensor codecs. This greatly reduces the requirement for memory capacity and communication bandwidth, enabling training and inference of large models on consumer-grade GPUs.

We present SMPLOlympics, a collection of physically simulated environments that allow humanoids to compete in a variety of Olympic sports. Sports simulation offers a rich and standardized testing ground for evaluating and improving the capabilities of learning algorithms due to the diversity and physically demanding nature of athletic activities. As humans have been competing in these sports for many years, there is also a plethora of existing knowledge on the preferred strategy to achieve better performance. To leverage these existing human demonstrations from videos and motion capture, we design our humanoid to be compatible with the widely-used SMPL and SMPL-X human models from the vision and graphics community. We provide a suite of individual sports environments, including golf, javelin throw, high jump, long jump, and hurdling, as well as competitive sports, including both 1v1 and 2v2 games such as table tennis, tennis, fencing, boxing, soccer, and basketball. Our analysis shows that combining strong motion priors with simple rewards can result in human-like behavior in various sports. By providing a unified sports benchmark and baseline implementation of state and reward designs, we hope that SMPLOlympics can help the control and animation communities achieve human-like and performant behaviors.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

北京阿比特科技有限公司