This work proposes an autonomous multi-robot exploration pipeline that coordinates the behaviors of robots in an indoor environment composed of multiple rooms. Contrary to simple frontier-based exploration approaches, we aim to enable robots to methodically explore and observe an unknown set of rooms in a structured building, keeping track of which rooms are already explored and sharing this information among robots to coordinate their behaviors in a distributed manner. To this end, we propose (1) a geometric cue extraction method that processes 3D point cloud data and detects the locations of potential cues such as doors and rooms, (2) a circular decomposition for free spaces used for target assignment. Using these two components, our pipeline effectively assigns tasks among robots, and enables a methodical exploration of rooms. We evaluate the performance of our pipeline using a team of up to 3 aerial robots, and show that our method outperforms the baseline by 33.4% in simulation and 26.4% in real-world experiments.
We describe a new general method for segmentation in MRI scans using Topological Data Analysis (TDA), offering several advantages over traditional machine learning approaches. It works in three steps, first identifying the whole object to segment via automatic thresholding, then detecting a distinctive subset whose topology is known in advance, and finally deducing the various components of the segmentation. Although convoking classical ideas of TDA, such an algorithm has never been proposed separately from deep learning methods. To achieve this, our approach takes into account, in addition to the homology of the image, the localization of representative cycles, a piece of information that seems never to have been exploited in this context. In particular, it offers the ability to perform segmentation without the need for large annotated data sets. TDA also provides a more interpretable and stable framework for segmentation by explicitly mapping topological features to segmentation components. By adapting the geometric object to be detected, the algorithm can be adjusted to a wide range of data segmentation challenges. We carefully study the examples of glioblastoma segmentation in brain MRI, where a sphere is to be detected, as well as myocardium in cardiac MRI, involving a cylinder, and cortical plate detection in fetal brain MRI, whose 2D slices are circles. We compare our method to state-of-the-art algorithms.
Event-based cameras provide accurate and high temporal resolution measurements for performing computer vision tasks in challenging scenarios, such as high-dynamic range environments and fast-motion maneuvers. Despite their advantages, utilizing deep learning for event-based vision encounters a significant obstacle due to the scarcity of annotated data caused by the relatively recent emergence of event-based cameras. To overcome this limitation, leveraging the knowledge available from annotated data obtained with conventional frame-based cameras presents an effective solution based on unsupervised domain adaptation. We propose a new algorithm tailored for adapting a deep neural network trained on annotated frame-based data to generalize well on event-based unannotated data. Our approach incorporates uncorrelated conditioning and self-supervised learning in an adversarial learning scheme to close the gap between the two source and target domains. By applying self-supervised learning, the algorithm learns to align the representations of event-based data with those from frame-based camera data, thereby facilitating knowledge transfer.Furthermore, the inclusion of uncorrelated conditioning ensures that the adapted model effectively distinguishes between event-based and conventional data, enhancing its ability to classify event-based images accurately.Through empirical experimentation and evaluation, we demonstrate that our algorithm surpasses existing approaches designed for the same purpose using two benchmarks. The superior performance of our solution is attributed to its ability to effectively utilize annotated data from frame-based cameras and transfer the acquired knowledge to the event-based vision domain.
We propose a novel data-driven semi-confirmatory factor analysis (SCFA) model that addresses the absence of model specification and handles the estimation and inference tasks with high-dimensional data. Confirmatory factor analysis (CFA) is a prevalent and pivotal technique for statistically validating the covariance structure of latent common factors derived from multiple observed variables. In contrast to other factor analysis methods, CFA offers a flexible covariance modeling approach for common factors, enhancing the interpretability of relationships between the common factors, as well as between common factors and observations. However, the application of classic CFA models faces dual barriers: the lack of a prerequisite specification of "non-zero loadings" or factor membership (i.e., categorizing the observations into distinct common factors), and the formidable computational burden in high-dimensional scenarios where the number of observed variables surpasses the sample size. To bridge these two gaps, we propose the SCFA model by integrating the underlying high-dimensional covariance structure of observed variables into the CFA model. Additionally, we offer computationally efficient solutions (i.e., closed-form uniformly minimum variance unbiased estimators) and ensure accurate statistical inference through closed-form exact variance estimators for all model parameters and factor scores. Through an extensive simulation analysis benchmarking against standard computational packages, SCFA exhibits superior performance in estimating model parameters and recovering factor scores, while substantially reducing the computational load, across both low- and high-dimensional scenarios. It exhibits moderate robustness to model misspecification. We illustrate the practical application of the SCFA model by conducting factor analysis on a high-dimensional gene expression dataset.
The industrial Internet of Things (IIoT) involves the integration of Internet of Things (IoT) technologies into industrial settings. However, given the high sensitivity of the industry to the security of industrial control system networks and IIoT, the use of software-defined networking (SDN) technology can provide improved security and automation of communication processes. Despite this, the architecture of SDN can give rise to various security threats. Therefore, it is of paramount importance to consider the impact of these threats on SDN-based IIoT environments. Unlike previous research, which focused on security in IIoT and SDN architectures separately, we propose an integrated method including two components that work together seamlessly for better detecting and preventing security threats associated with SDN-based IIoT architectures. The two components consist in a convolutional neural network-based Intrusion Detection System (IDS) implemented as an SDN application and a Blockchain-based system (BS) to empower application layer and network layer security, respectively. A significant advantage of the proposed method lies in jointly minimizing the impact of attacks such as command injection and rule injection on SDN-based IIoT architecture layers. The proposed IDS exhibits superior classification accuracy in both binary and multiclass categories.
Security resources are scarce, and practitioners need guidance in the effective and efficient usage of techniques and tools available in the cybersecurity industry. Two emerging tool types, Interactive Application Security Testing (IAST) and Runtime Application Self-Protection (RASP), have not been thoroughly evaluated against well-established counterparts such as Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST). The goal of this research is to aid practitioners in making informed choices about the use of Interactive Application Security Testing (IAST) and Runtime Application Self-Protection (RASP) tools through an analysis of their effectiveness and efficiency in comparison with different vulnerability detection and prevention techniques and tools. We apply IAST and RASP on OpenMRS, an open-source Java-based online application. We compare the efficiency and effectiveness of IAST and RASP with techniques applied on OpenMRS in prior work. We measure efficiency and effectiveness in terms of the number and type of vulnerabilities detected and prevented per hour. Our study shows IAST performed relatively well compared to other techniques, performing second-best in both efficiency and effectiveness. IAST detected eight Top-10 OWASP security risks compared to nine by SMPT and seven for EMPT, DAST, and SAST. IAST found more vulnerabilities than SMPT. The efficiency of IAST (2.14 VpH) is second to only EMPT (2.22 VpH). These findings imply that our study benefited from using IAST when conducting black-box security testing. In the context of a large, enterprise-scale web application such as OpenMRS, RASP does not replace vulnerability detection, while IAST is a powerful tool that complements other techniques.
Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.
Comprehensive and accurate evaluation of general-purpose AI systems such as large language models allows for effective mitigation of their risks and deepened understanding of their capabilities. Current evaluation methodology, mostly based on benchmarks of specific tasks, falls short of adequately assessing these versatile AI systems, as present techniques lack a scientific foundation for predicting their performance on unforeseen tasks and explaining their varying performance on specific task items or user inputs. Moreover, existing benchmarks of specific tasks raise growing concerns about their reliability and validity. To tackle these challenges, we suggest transitioning from task-oriented evaluation to construct-oriented evaluation. Psychometrics, the science of psychological measurement, provides a rigorous methodology for identifying and measuring the latent constructs that underlie performance across multiple tasks. We discuss its merits, warn against potential pitfalls, and propose a framework to put it into practice. Finally, we explore future opportunities of integrating psychometrics with the evaluation of general-purpose AI systems.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.