Multilingual Automatic Speech Recognition (ASR) models are capable of transcribing audios across multiple languages, eliminating the need for separate models. In addition, they can perform Language Identification (LID) and handle code-switched speech. However, training these models requires special code-switch and multilingual speech corpora which are sparsely available. In this paper, we evaluate different approaches towards training of bilingual as well as code-switched ASR models using purely monolingual data sources. We introduce the concept of aggregate tokenizers that differs from the current prevalent technique of generating LIDs at the boundaries of monolingual samples and produces LID for each emitted token instead. We compare bilingual and monolingual model performance, showcase the efficacy of aggregate tokenizers, present a synthetic code-switched ASR data generation technique and demonstrate the effectiveness of the proposed code-switched ASR models for the tasks of speech recognition and spoken language identification.
Scene Text Image Super-resolution (STISR) aims to recover high-resolution (HR) scene text images with visually pleasant and readable text content from the given low-resolution (LR) input. Most existing works focus on recovering English texts, which have relatively simple character structures, while little work has been done on the more challenging Chinese texts with diverse and complex character structures. In this paper, we propose a real-world Chinese-English benchmark dataset, namely Real-CE, for the task of STISR with the emphasis on restoring structurally complex Chinese characters. The benchmark provides 1,935/783 real-world LR-HR text image pairs~(contains 33,789 text lines in total) for training/testing in 2$\times$ and 4$\times$ zooming modes, complemented by detailed annotations, including detection boxes and text transcripts. Moreover, we design an edge-aware learning method, which provides structural supervision in image and feature domains, to effectively reconstruct the dense structures of Chinese characters. We conduct experiments on the proposed Real-CE benchmark and evaluate the existing STISR models with and without our edge-aware loss. The benchmark, including data and source code, is available at //github.com/mjq/Real-CE.
With the recent progress in large-scale vision and language representation learning, Vision Language Pre-training (VLP) models have achieved promising improvements on various multi-modal downstream tasks. Albeit powerful, these models have not fully leveraged world knowledge to their advantage. A key challenge of knowledge-augmented VLP is the lack of clear connections between knowledge and multi-modal data. Moreover, not all knowledge present in images/texts is useful, therefore prior approaches often struggle to effectively integrate knowledge, visual, and textual information. In this study, we propose REtrieval-based knowledge Augmented Vision Language (REAVL), a novel knowledge-augmented pre-training framework to address the above issues. For the first time, we introduce a knowledge-aware self-supervised learning scheme that efficiently establishes the correspondence between knowledge and multi-modal data and identifies informative knowledge to improve the modeling of alignment and interactions between visual and textual modalities. By adaptively integrating informative knowledge with visual and textual information, REAVL achieves new state-of-the-art performance uniformly on knowledge-based vision-language understanding and multi-modal entity linking tasks, as well as competitive results on general vision-language tasks while only using 0.2% pre-training data of the best models. Our model shows strong sample efficiency and effective knowledge utilization.
There has been a growing interest in using end-to-end acoustic models for singing voice synthesis (SVS). Typically, these models require an additional vocoder to transform the generated acoustic features into the final waveform. However, since the acoustic model and the vocoder are not jointly optimized, a gap can exist between the two models, leading to suboptimal performance. Although a similar problem has been addressed in the TTS systems by joint-training or by replacing acoustic features with a latent representation, adopting corresponding approaches to SVS is not an easy task. How to improve the joint-training of SVS systems has not been well explored. In this paper, we conduct a systematic investigation of how to better perform a joint-training of an acoustic model and a vocoder for SVS. We carry out extensive experiments and demonstrate that our joint-training strategy outperforms baselines, achieving more stable performance across different datasets while also increasing the interpretability of the entire framework.
Non-deterministic Finite Automata (NFA) represent regular languages concisely, increasing their appeal for applications such as word recognition. This paper proposes a new approach to generate NFA from an interaction language such as UML Sequence Diagrams or Message Sequence Charts. Via an operational semantics, we generate a NFA from a set of interactions reachable using the associated execution relation. In addition, by applying simplifications on reachable interactions to merge them, it is possible to obtain reduced NFA without relying on costly NFA reduction techniques. Experimental results regarding NFA generation and their application in trace analysis are also presented.
In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.