Background. From information theory, surprisal is a measurement of how unexpected an event is. Statistical language models provide a probabilistic approximation of natural languages, and because surprisal is constructed with the probability of an event occuring, it is therefore possible to determine the surprisal associated with English sentences. The issues and pull requests of software repository issue trackers give insight into the development process and likely contain the surprising events of this process. Objective. Prior works have identified that unusual events in software repositories are of interest to developers, and use simple code metrics-based methods for detecting them. In this study we will propose a new method for unusual event detection in software repositories using surprisal. With the ability to find surprising issues and pull requests, we intend to further analyse them to determine if they actually hold importance in a repository, or if they pose a significant challenge to address. If it is possible to find bad surprises early, or before they cause additional troubles, it is plausible that effort, cost and time will be saved as a result. Method. After extracting the issues and pull requests from 5000 of the most popular software repositories on GitHub, we will train a language model to represent these issues. We will measure their perceived importance in the repository, measure their resolution difficulty using several analogues, measure the surprisal of each, and finally generate inferential statistics to describe any correlations.
The tuning of hyperparameters becomes increasingly important as machine learning (ML) models have been extensively applied in data mining applications. Among various approaches, Bayesian optimization (BO) is a successful methodology to tune hyper-parameters automatically. While traditional methods optimize each tuning task in isolation, there has been recent interest in speeding up BO by transferring knowledge across previous tasks. In this work, we introduce an automatic method to design the BO search space with the aid of tuning history from past tasks. This simple yet effective approach can be used to endow many existing BO methods with transfer learning capabilities. In addition, it enjoys the three advantages: universality, generality, and safeness. The extensive experiments show that our approach considerably boosts BO by designing a promising and compact search space instead of using the entire space, and outperforms the state-of-the-arts on a wide range of benchmarks, including machine learning and deep learning tuning tasks, and neural architecture search.
Annotated data is an essential ingredient in natural language processing for training and evaluating machine learning models. It is therefore very desirable for the annotations to be of high quality. Recent work, however, has shown that several popular datasets contain a surprising amount of annotation errors or inconsistencies. To alleviate this issue, many methods for annotation error detection have been devised over the years. While researchers show that their approaches work well on their newly introduced datasets, they rarely compare their methods to previous work or on the same datasets. This raises strong concerns on methods' general performance and makes it difficult to asses their strengths and weaknesses. We therefore reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English datasets for text classification as well as token and span labeling. In addition, we define a uniform evaluation setup including a new formalization of the annotation error detection task, evaluation protocol and general best practices. To facilitate future research and reproducibility, we release our datasets and implementations in an easy-to-use and open source software package.
Evolution of disease in a large population is a function of the top-down policy measures from a centralized planner, as well as the self-interested decisions (to be socially active) of individual agents in a large heterogeneous population. This paper is concerned with understanding the latter based on a mean-field type optimal control model. Specifically, the model is used to investigate the role of partial information on an agent's decision-making, and study the impact of such decisions by a large number of agents on the spread of the virus in the population. The motivation comes from the presymptomatic and asymptomatic spread of the COVID-19 virus where an agent unwittingly spreads the virus. We show that even in a setting with fully rational agents, limited information on the viral state can result in an epidemic growth.
In order to trust machine learning for high-stakes problems, we need models to be both reliable and interpretable. Recently, there has been a growing body of work on interpretable machine learning which generates human understandable insights into data, models, or predictions. At the same time, there has been increased interest in quantifying the reliability and uncertainty of machine learning predictions, often in the form of confidence intervals for predictions using conformal inference. Yet, there has been relatively little attention given to the reliability and uncertainty of machine learning interpretations, which is the focus of this paper. Our goal is to develop confidence intervals for a widely-used form of machine learning interpretation: feature importance. We specifically seek to develop universal model-agnostic and assumption-light confidence intervals for feature importance that will be valid for any machine learning model and for any regression or classification task. We do so by leveraging a form of random observation and feature subsampling called minipatch ensembles and show that our approach provides assumption-light asymptotic coverage for the feature importance score of any model. Further, our approach is fast as computations needed for inference come nearly for free as part of the ensemble learning process. Finally, we also show that our same procedure can be leveraged to provide valid confidence intervals for predictions, hence providing fast, simultaneous quantification of the uncertainty of both model predictions and interpretations. We validate our intervals on a series of synthetic and real data examples, showing that our approach detects the correct important features and exhibits many computational and statistical advantages over existing methods.
We discover restrained numerical instabilities in current training practices of deep networks with SGD. We show numerical error (on the order of the smallest floating point bit) induced from floating point arithmetic in training deep nets can be amplified significantly and result in significant test accuracy variance, comparable to the test accuracy variance due to stochasticity in SGD. We show how this is likely traced to instabilities of the optimization dynamics that are restrained, i.e., localized over iterations and regions of the weight tensor space. We do this by presenting a theoretical framework using numerical analysis of partial differential equations (PDE), and analyzing the gradient descent PDE of a simplified convolutional neural network (CNN). We show that it is stable only under certain conditions on the learning rate and weight decay. We reproduce the localized instabilities in the PDE for the simplified network, which arise when the conditions are violated.
Radiomics has shown a capability for different types of cancers such as glioma to predict the clinical outcome. It can have a non-invasive means of evaluating the immunotherapy response prior to treatment. However, the use of deep convolutional neural networks (CNNs)-based radiomics requires large training image sets. To avoid this problem, we investigate a new imaging features that model distribution with a Gaussian mixture model (GMM) of learned 3D CNN features. Using these deep radiomic features (DRFs), we aim to predict the immune marker status (low versus high) and overall survival for glioma patients. We extract the DRFs by aggregating the activation maps of a pre-trained 3D-CNN within labeled tumor regions of MRI scans that corresponded immune markers of 151 patients. Our experiments are performed to assess the relationship between the proposed DRFs, three immune cell markers (Macrophage M1, Neutrophils and T Cells Follicular Helper), and measure their association with overall survival. Using the random forest (RF) model, DRFs was able to predict the immune marker status with area under the ROC curve (AUC) of 78.67, 83.93 and 75.67\% for Macrophage M1, Neutrophils and T Cells Follicular Helper, respectively. Combined the immune markers with DRFs and clinical variables, Kaplan-Meier estimator and Log-rank test achieved the most significant difference between predicted groups of patients (short-term versus long-term survival) with p\,=\,4.31$\times$10$^{-7}$ compared to p\,=\,0.03 for Immune cell markers, p\,=\,0.07 for clinical variables , and p\,=\,1.45$\times$10$^{-5}$ for DRFs. Our findings indicate that the proposed features (DRFs) used in RF models may significantly consider prognosticating patients with brain tumour prior to surgery through regularly acquired imaging data.
Emerging quantum algorithms for problems such as element distinctness, subset sum, and closest pair demonstrate computational advantages by relying on abstract data structures. Practically realizing such an algorithm as a program for a quantum computer requires an efficient implementation of the data structure whose operations correspond to unitary operators that manipulate quantum superpositions of data. To correctly operate in superposition, an implementation must satisfy three properties -- reversibility, history independence, and bounded-time execution. Standard implementations, such as representing an abstract set as a hash table, fail these properties, calling for tools to develop specialized implementations. In this work, we present Core Tower, the first language for quantum programming with random-access memory. Core Tower enables the developer to implement data structures as pointer-based, linked data. It features a reversible semantics enabling every valid program to be translated to a unitary quantum circuit. We present Boson, the first memory allocator that supports reversible, history-independent, and constant-time dynamic memory allocation in quantum superposition. We also present Tower, a language for quantum programming with inductive data structures. Tower features a type system that bounds all recursion using classical parameters. Using Tower, we implement Ground, the first quantum library of data structures, including lists, stacks, queues, strings, and sets. We provide the first executable implementation of sets that satisfies all three mandated properties of reversibility, history independence, and bounded-time execution.
We study identifiability of the parameters in autoregressions defined on a network. Most identification conditions that are available for these models either rely on the network being observed repeatedly, are only sufficient, or require strong distributional assumptions. This paper derives conditions that apply even when the individuals composing the network are observed only once, are necessary and sufficient for identification, and require weak distributional assumptions. We find that the model parameters are generically, in the measure theoretic sense, identified even without repeated observations, and analyze the combinations of the interaction matrix and the regressor matrix causing identification failures. This is done both in the original model and after certain transformations in the sample space, the latter case being relevant, for example, in some fixed effects specifications.
In current microarchitectures, due to the complex memory hierarchies and different latencies on memory accesses, thread and data mapping are important issues to improve application performance. Software transactional memory (STM) is an abstraction used for thread synchronization, replacing the use of locks in parallel programming. Regarding thread and data mapping, STM presents new challenges and mapping opportunities, since (1) STM can use different conflict detection and resolution strategies, making the behavior of the application less predictable and; (2) the STM runtime has precise information about shared data and the intensity with each thread accesses them. These unique characteristics provide many opportunities for low-overhead, but precise statistics to guide mapping strategies for STM applications. The main objective of this paper is to survey the existing work about thread and data mapping that uses solely information gathered from the STM runtime to guide thread and data mapping decisions. We also discuss future research directions within this research area.
Incrementality, which is used to measure the causal effect of showing an ad to a potential customer (e.g. a user in an internet platform) versus not, is a central object for advertisers in online advertising platforms. This paper investigates the problem of how an advertiser can learn to optimize the bidding sequence in an online manner \emph{without} knowing the incrementality parameters in advance. We formulate the offline version of this problem as a specially structured episodic Markov Decision Process (MDP) and then, for its online learning counterpart, propose a novel reinforcement learning (RL) algorithm with regret at most $\widetilde{O}(H^2\sqrt{T})$, which depends on the number of rounds $H$ and number of episodes $T$, but does not depend on the number of actions (i.e., possible bids). A fundamental difference between our learning problem from standard RL problems is that the realized reward feedback from conversion incrementality is \emph{mixed} and \emph{delayed}. To handle this difficulty we propose and analyze a novel pairwise moment-matching algorithm to learn the conversion incrementality, which we believe is of independent of interest.