亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. Inner and outer bounds are provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are proposed. The first one is a new coding scheme using backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy description of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. A numerical example shows that the achievable region given by the first coding scheme can be strictly larger than the second one. However, these two schemes do not outperform each other in general and there exists some numerical examples that in different channel models each coding scheme achieves some rate pairs that cannot be achieved by another scheme. Our established inner bound reduces to some best-known results in the literature as special cases. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.

相關內容

Individuals with complex communication needs (CCN) often rely on augmentative and alternative communication (AAC) systems to have conversations and communique their wants. Such systems allow message authoring by arranging pictograms in sequence. However, the difficulty of finding the desired item to complete a sentence can increase as the user's vocabulary increases. This paper proposes using BERTimbau, a Brazilian Portuguese version of BERT, for pictogram prediction in AAC systems. To finetune BERTimbau, we constructed an AAC corpus for Brazilian Portuguese to use as a training corpus. We tested different approaches to representing a pictogram for prediction: as a word (using pictogram captions), as a concept (using a dictionary definition), and as a set of synonyms (using related terms). We also evaluated the usage of images for pictogram prediction. The results demonstrate that using embeddings computed from the pictograms' caption, synonyms, or definitions have a similar performance. Using synonyms leads to lower perplexity, but using captions leads to the highest accuracies. This paper provides insight into how to represent a pictogram for prediction using a BERT-like model and the potential of using images for pictogram prediction.

The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports. As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques, such as intelligent object detection, is emerging as an effective approach to enhance operational efficiency. This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management. The primary objective centers on improving accuracy and robustness in detecting buoys across a spectrum of real-world scenarios. A diverse dataset sourced from mussel farms is captured and labeled for training, encompassing imagery taken from cameras mounted on both floating platforms and traversing vessels, capturing various lighting and weather conditions. To establish an effective deep learning model for buoy detection with a limited number of labeled data, we employ transfer learning techniques. This involves adapting a pre-trained object detection model to create a specialized deep learning buoy detection model. We explore different pre-trained models, including YOLO and its variants, alongside data diversity to investigate their effects on model performance. Our investigation demonstrates a significant enhancement in buoy detection performance through deep learning, accompanied by improved generalization across diverse weather conditions, highlighting the practical effectiveness of our approach.

The learned denoising-based approximate message passing (LDAMP) algorithm has attracted great attention for image compressed sensing (CS) tasks. However, it has two issues: first, its global measurement model severely restricts its applicability to high-dimensional images, and its block-based measurement method exhibits obvious block artifacts; second, the denoiser in the LDAMP is too simple, and existing denoisers have limited ability in detail recovery. In this paper, to overcome the issues and develop a high-performance LDAMP method for image block compressed sensing (BCS), we propose a novel sparsity and coefficient permutation-based AMP (SCP-AMP) method consisting of the block-based sampling and the two-domain reconstruction modules. In the sampling module, SCP-AMP adopts a discrete cosine transform (DCT) based sparsity strategy to reduce the impact of the high-frequency coefficient on the reconstruction, followed by a coefficient permutation strategy to avoid block artifacts. In the reconstruction module, a two-domain AMP method with DCT domain noise correction and pixel domain denoising is proposed for iterative reconstruction. Regarding the denoiser, we proposed a multi-level deep attention network (MDANet) to enhance the texture details by employing multi-level features and multiple attention mechanisms. Extensive experiments demonstrated that the proposed SCP-AMP method achieved better reconstruction accuracy than other state-of-the-art BCS algorithms in terms of both visual perception and objective metrics.

Non-orthogonal multiple access (NOMA) has come to the fore as a spectrally efficient technique for fifth-generation networks and beyond. At the same time, NOMA faces severe security issues in the presence of untrusted users due to successive interference cancellation (SIC)-based decoding at receivers. In this paper, to make the system model more realistic, we consider the impact of imperfect SIC during the decoding process. Assuming the downlink mode, we focus on designing a secure NOMA communication protocol for the considered system model with two untrusted users. In this regard, we obtain the power allocation bounds to achieve a positive secrecy rate for both near and far users. Analytical expressions of secrecy outage probability (SOP) for both users are derived to analyze secrecy performance. Closed-form approximations of SOPs are also provided to gain analytical insights. Lastly, numerical results have been presented, which validate the exactness of the analysis and reveal the effect of various key parameters on achieved secrecy performance.

Electronic exams (e-exams) have the potential to substantially reduce the effort required for conducting an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor constructive alignment nor grading fairness in favor of automation. To advance automation in the design and fair grading of (functional programming) e-exams, we introduce the following: A novel algorithm to check Proof Puzzles based on finding correct sequences of proof lines that improves fairness compared to an existing, edit distance based algorithm; an open-source static analysis tool to check source code for task relevant features by traversing the abstract syntax tree; a higher-level language and open-source tool to specify regular expressions that makes creating complex regular expressions less error-prone. Our findings are embedded in a complete experience report on transforming a paper exam to an e-exam. We evaluated the resulting e-exam by analyzing the degree of automation in the grading process, asking students for their opinion, and critically reviewing our own experiences. Almost all tasks can be graded automatically at least in part (correct solutions can almost always be detected as such), the students agree that an e-exam is a fitting examination format for the course but are split on how well they can express their thoughts compared to a paper exam, and examiners enjoy a more time-efficient grading process while the point distribution in the exam results was almost exactly the same compared to a paper exam.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司