亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we present a framework of key algorithms and data-structures for efficiently generating timetables for any number of AGVs from any given positioning on any given graph to accomplish any given demands as long as a few easily satisfiable assumptions are met. Our proposed algorithms provide guaranteed solutions in predictable polynomial running-times, which is fundamental to any real-time application. We also develop an improved geographic reservation algorithm that provides a substantial run-time improvement of the previously best-known algorithm from $O(nm)$ to $O(n)$.

相關內容

In this research paper, we introduce a novel classification method aimed at improving the performance of the K-Nearest Neighbors (KNN) algorithm. Our approach leverages Mutual Information (MI) to enhance the significance of weights and draw inspiration from Shapley values, a concept originating from cooperative game theory, to refine value allocation. The fundamental concept underlying KNN is the classification of samples based on the majority thorough their k-nearest neighbors. While both the distances and labels of these neighbors are crucial, traditional KNN assigns equal weight to all samples and prevance considering the varying importance of each neighbor based on their distances and labels. In the proposed method, known as Information-Modified KNN (IMKNN), we address this issue by introducing a straightforward algorithm. To evaluate the effectiveness of our approach, it is compared with 7 contemporary variants of KNN, as well as the traditional KNN. Each of these variants exhibits its unique advantages and limitations. We conduct experiments on 12 widely-used datasets, assessing the methods' performance in terms of accuracy, precision and recall. Our study demonstrates that IMKNN consistently outperforms other methods across different datasets and criteria by highlighting its superior performance in various classification tasks. These findings underscore the potential of IMKNN as a valuable tool for enhancing the capabilities of the KNN algorithm in diverse applications.

In this paper, we investigate covert communications in a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided rate-splitting multiple access (RSMA) system. Under the RSMA principles, the messages for the covert user (Bob) and public user (Grace) are converted to the common and private streams at the legitimate transmitter (Alice) to realize downlink transmissions, while the STAR-RIS is deployed not only to aid the public transmissions from Alice to Grace, but also to shield the covert transmissions from Alice to Bob against the warden (Willie). To characterize the covert performance of the considered STAR-RIS-aided RSMA (STAR-RIS-RSMA) system, we derive analytical expression for the minimum average detection error probability of Willie, based on which a covert rate maximization problem is formulated. To maximize Bob's covert rate while confusing Willie's monitoring, the transmit power allocation, common rate allocation, and STAR-RIS reflection/transmission beamforming are jointly optimized subject to Grace's quality of service (QoS) requirements. The non-convex covert rate maximization problem, consisting of highly coupled system parameters are decoupled into three sub-problems of transmit power allocation, common rate allocation, and STAR-RIS reflection/transmission beamforming, respectively. To obtain the rank-one constrained optimal solution for the sub-problem of optimizing the STAR-RIS reflection/transmission beamforming, a penalty-based successive convex approximation scheme is developed. Moreover, an alternative optimization (AO) algorithm is designed to determine the optimal solution for the sub-problem of optimizing the transmit power allocation, while the original problem is overall solved by a new AO algorithm.

In this paper, we focus on mean-field variational Bayesian Neural Networks (BNNs) and explore the representation capacity of such BNNs by investigating which types of concepts are less likely to be encoded by the BNN. It has been observed and studied that a relatively small set of interactive concepts usually emerge in the knowledge representation of a sufficiently-trained neural network, and such concepts can faithfully explain the network output. Based on this, our study proves that compared to standard deep neural networks (DNNs), it is less likely for BNNs to encode complex concepts. Experiments verify our theoretical proofs. Note that the tendency to encode less complex concepts does not necessarily imply weak representation power, considering that complex concepts exhibit low generalization power and high adversarial vulnerability. The code is available at //github.com/sjtu-xai-lab/BNN-concepts.

Motivated by Tucker tensor decomposition, this paper imposes low-rank structures to the column and row spaces of coefficient matrices in a multivariate infinite-order vector autoregression (VAR), which leads to a supervised factor model with two factor modelings being conducted to responses and predictors simultaneously. Interestingly, the stationarity condition implies an intrinsic weak group sparsity mechanism of infinite-order VAR, and hence a rank-constrained group Lasso estimation is considered for high-dimensional linear time series. Its non-asymptotic properties are discussed thoughtfully by balancing the estimation, approximation and truncation errors. Moreover, an alternating gradient descent algorithm with thresholding is designed to search for high-dimensional estimates, and its theoretical justifications, including statistical and convergence analysis, are also provided. Theoretical and computational properties of the proposed methodology are verified by simulation experiments, and the advantages over existing methods are demonstrated by two real examples.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司