亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since the concern of privacy leakage extremely discourages user participation in sharing data, federated learning has gradually become a promising technique for both academia and industry for achieving collaborative learning without leaking information about the local data. Unfortunately, most federated learning solutions cannot efficiently verify the execution of each participant's local machine learning model and protect the privacy of user data, simultaneously. In this article, we first propose a Zero-Knowledge Proof-based Federated Learning (ZKP-FL) scheme on blockchain. It leverages zero-knowledge proof for both the computation of local data and the aggregation of local model parameters, aiming to verify the computation process without requiring the plaintext of the local data. We further propose a Practical ZKP-FL (PZKP-FL) scheme to support fraction and non-linear operations. Specifically, we explore a Fraction-Integer mapping function, and use Taylor expansion to efficiently handle non-linear operations while maintaining the accuracy of the federated learning model. We also analyze the security of PZKP-FL. Performance analysis demonstrates that the whole running time of the PZKP-FL scheme is approximately less than one minute in parallel execution.

相關內容

With the arising concerns of privacy within machine learning, federated learning (FL) was invented in 2017, in which the clients, such as mobile devices, train a model and send the update to the centralized server. Choosing clients randomly for FL can harm learning performance due to different reasons. Many studies have proposed approaches to address the challenges of client selection of FL. However, no systematic literature review (SLR) on this topic existed. This SLR investigates the state of the art of client selection in FL and answers the challenges, solutions, and metrics to evaluate the solutions. We systematically reviewed 47 primary studies. The main challenges found in client selection are heterogeneity, resource allocation, communication costs, and fairness. The client selection schemes aim to improve the original random selection algorithm by focusing on one or several of the aforementioned challenges. The most common metric used is testing accuracy versus communication rounds, as testing accuracy measures the successfulness of the learning and preferably in as few communication rounds as possible, as they are very expensive. Although several possible improvements can be made with the current state of client selection, the most beneficial ones are evaluating the impact of unsuccessful clients and gaining a more theoretical understanding of the impact of fairness in FL.

Federated learning (FL) systems are susceptible to attacks from malicious actors who might attempt to corrupt the training model through various poisoning attacks. FL also poses new challenges in addressing group bias, such as ensuring fair performance for different demographic groups. Traditional methods used to address such biases require centralized access to the data, which FL systems do not have. In this paper, we present a novel approach FedVal for both robustness and fairness that does not require any additional information from clients that could raise privacy concerns and consequently compromise the integrity of the FL system. To this end, we propose an innovative score function based on a server-side validation method that assesses client updates and determines the optimal aggregation balance between locally-trained models. Our research shows that this approach not only provides solid protection against poisoning attacks but can also be used to reduce group bias and subsequently promote fairness while maintaining the system's capability for differential privacy. Extensive experiments on the CIFAR-10, FEMNIST, and PUMS ACSIncome datasets in different configurations demonstrate the effectiveness of our method, resulting in state-of-the-art performances. We have proven robustness in situations where 80% of participating clients are malicious. Additionally, we have shown a significant increase in accuracy for underrepresented labels from 32% to 53%, and increase in recall rate for underrepresented features from 19% to 50%.

Security has become a significant concern with the increased popularity of cloud storage services. It comes with the vulnerability of being accessed by third parties. Security is one of the major hurdles in the cloud server for the user when the user data that reside in local storage is outsourced to the cloud. It has given rise to security concerns involved in data confidentiality even after the deletion of data from cloud storage. Though, it raises a serious problem when the encrypted data needs to be shared with more people than the data owner initially designated. However, searching on encrypted data is a fundamental issue in cloud storage. The method of searching over encrypted data represents a significant challenge in the cloud. Searchable encryption allows a cloud server to conduct a search over encrypted data on behalf of the data users without learning the underlying plaintexts. While many academic SE schemes show provable security, they usually expose some query information, making them less practical, weak in usability, and challenging to deploy. Also, sharing encrypted data with other authorized users must provide each document's secret key. However, this way has many limitations due to the difficulty of key management and distribution. We have designed the system using the existing cryptographic approaches, ensuring the search on encrypted data over the cloud. The primary focus of our proposed model is to ensure user privacy and security through a less computationally intensive, user-friendly system with a trusted third party entity. To demonstrate our proposed model, we have implemented a web application called CryptoSearch as an overlay system on top of a well-known cloud storage domain. It exhibits secure search on encrypted data with no compromise to the user-friendliness and the scheme's functional performance in real-world applications.

As one kind of distributed machine learning technique, federated learning enables multiple clients to build a model across decentralized data collaboratively without explicitly aggregating the data. Due to its ability to break data silos, federated learning has received increasing attention in many fields, including finance, healthcare, and education. However, the invisibility of clients' training data and the local training process result in some security issues. Recently, many works have been proposed to research the security attacks and defenses in federated learning, but there has been no special survey on poisoning attacks on federated learning and the corresponding defenses. In this paper, we investigate the most advanced schemes of federated learning poisoning attacks and defenses and point out the future directions in these areas.

Tabular data sharing serves as a common method for data exchange. However, sharing sensitive information without adequate privacy protection can compromise individual privacy. Thus, ensuring privacy-preserving data sharing is crucial. Differential privacy (DP) is regarded as the gold standard in data privacy. Despite this, current DP methods tend to generate privacy-preserving tabular datasets that often suffer from limited practical utility due to heavy perturbation and disregard for the tables' utility dynamics. Besides, there has not been much research on selective attribute release, particularly in the context of controlled partially perturbed data sharing. This has significant implications for scenarios such as cross-agency data sharing in real-world situations. We introduce OptimShare: a utility-focused, multi-criteria solution designed to perturb input datasets selectively optimized for specific real-world applications. OptimShare combines the principles of differential privacy, fuzzy logic, and probability theory to establish an integrated tool for privacy-preserving data sharing. Empirical assessments confirm that OptimShare successfully strikes a balance between better data utility and robust privacy, effectively serving various real-world problem scenarios.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

北京阿比特科技有限公司