The present work is devoted to strong approximations of a generalized Ait-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size h>0. A mean-square convergence rate of order 0.5 is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. To the best of our knowledge, this is the first paper to propose an unconditionally positivity preserving explicit scheme with order 1/2 of mean-square convergence for the model. Numerical experiments are finally provided to confirm the theoretical findings.
We present a fully-integrated lattice Boltzmann (LB) method for fluid--structure interaction (FSI) simulations that efficiently models deformable solids in complex suspensions and active systems. Our Eulerian method (LBRMT) couples finite-strain solids to the LB fluid on the same fixed computational grid with the reference map technique (RMT). An integral part of the LBRMT is a new LB boundary condition for moving deformable interfaces across different densities. With this fully Eulerian solid--fluid coupling, the LBRMT is well-suited for parallelization and simulating multi-body contact without remeshing or extra meshes. We validate its accuracy via a benchmark of a deformable solid in a lid-driven cavity, then showcase its versatility through examples of soft solids rotating and settling. With simulations of complex suspensions mixing, we highlight potentials of the LBRMT for studying collective behavior in soft matter and biofluid dynamics.
Diffusion probabilistic models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data, for instance, for computer vision, audio, natural language processing, or biomolecule generation. Here, we propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals. ILTs are of major importance in mobility research to understand the mobility behavior of populations and to ultimately inform political decision-making. We represent ILTs as multi-dimensional categorical random variables and propose to model their joint distribution using a continuous DPM by first applying the diffusion process in a continuous unconstrained space and then mapping the continuous variables into a discrete space. We demonstrate that our model can synthesize realistic ILPs by comparing conditionally and unconditionally generated sequences to real-world ILPs from a GNSS tracking data set which suggests the potential use of our model for synthetic data generation, for example, for benchmarking models used in mobility research.
A major challenge in computed tomography is reconstructing objects from incomplete data. An increasingly popular solution for these problems is to incorporate deep learning models into reconstruction algorithms. This study introduces a novel approach by integrating a Fourier neural operator (FNO) into the Filtered Backprojection (FBP) reconstruction method, yielding the FNO back projection (FNO-BP) network. We employ moment conditions for sinogram extrapolation to assist the model in mitigating artefacts from limited data. Notably, our deep learning architecture maintains a runtime comparable to classical filtered back projection (FBP) reconstructions, ensuring swift performance during both inference and training. We assess our reconstruction method in the context of the Helsinki Tomography Challenge 2022 and also compare it against regular FBP methods.
Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.
Two Cox-based multistate modeling approaches are compared for analyzing a complex multicohort event history process. The first approach incorporates cohort information as a fixed covariate, thereby providing a direct estimation of the cohort-specific effects. The second approach includes the cohort as stratum variable, thus giving an extra flexibility in estimating the transition probabilities. Additionally, both approaches may include possible interaction terms between the cohort and a given prognostic predictor. Furthermore, the Markov property conditional on observed prognostic covariates is assessed using a global score test. Whenever departures from the Markovian assumption are revealed for a given transition, the time of entry into the current state is incorporated as a fixed covariate, yielding a semi-Markov process. The two proposed methods are applied to a three-wave dataset of COVID-19-hospitalized adults in the southern Barcelona metropolitan area (Spain), and the corresponding performance is discussed. While both semi-Markovian approaches are shown to be useful, the preferred one will depend on the focus of the inference. To summarize, the cohort-covariate approach enables an insightful discussion on the the behavior of the cohort effects, whereas the stratum-cohort approach provides flexibility to estimate transition-specific underlying risks according with the different cohorts
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in mathematical physics and engineering. Many such problems can be alternatively formulated as integral equations that are mathematically more tractable. However, an integral-equation formulation poses a significant computational challenge: solving large dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well-established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and computation costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes computation and data movement. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to show the performance of our Julia implementation.
We present an algorithm for the exact computer-aided construction of the Voronoi cells of lattices with known symmetry group. Our algorithm scales better than linearly with the total number of faces and is applicable to dimensions beyond 12, which previous methods could not achieve. The new algorithm is applied to the Coxeter-Todd lattice $K_{12}$ as well as to a family of lattices obtained from laminating $K_{12}$. By optimizing this family, we obtain a new best 13-dimensional lattice quantizer (among the lattices with published exact quantizer constants).
Complex interval arithmetic is a powerful tool for the analysis of computational errors. The naturally arising rectangular, polar, and circular (together called primitive) interval types are not closed under simple arithmetic operations, and their use yields overly relaxed bounds. The later introduced polygonal type, on the other hand, allows for arbitrarily precise representation of the above operations for a higher computational cost. We propose the polyarcular interval type as an effective extension of the previous types. The polyarcular interval can represent all primitive intervals and most of their arithmetic combinations precisely and has an approximation capability competing with that of the polygonal interval. In particular, in antenna tolerance analysis it can achieve perfect accuracy for lower computational cost then the polygonal type, which we show in a relevant case study. In this paper, we present a rigorous analysis of the arithmetic properties of all five interval types, involving a new algebro-geometric method of boundary analysis.
Diffusion models have demonstrated remarkable performance in generation tasks. Nevertheless, explaining the diffusion process remains challenging due to it being a sequence of denoising noisy images that are difficult for experts to interpret. To address this issue, we propose the three research questions to interpret the diffusion process from the perspective of the visual concepts generated by the model and the region where the model attends in each time step. We devise tools for visualizing the diffusion process and answering the aforementioned research questions to render the diffusion process human-understandable. We show how the output is progressively generated in the diffusion process by explaining the level of denoising and highlighting relationships to foundational visual concepts at each time step through the results of experiments with various visual analyses using the tools. Throughout the training of the diffusion model, the model learns diverse visual concepts corresponding to each time-step, enabling the model to predict varying levels of visual concepts at different stages. We substantiate our tools using Area Under Cover (AUC) score, correlation quantification, and cross-attention mapping. Our findings provide insights into the diffusion process and pave the way for further research into explainable diffusion mechanisms.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.