Deep neural networks (DNNs) have been found vulnerable to backdoor attacks, raising security concerns about their deployment in mission-critical applications. There are various approaches to detect backdoor attacks, however they all make certain assumptions about the target attack to be detected and require equal and huge numbers of clean and backdoor samples for training, which renders these detection methods quite limiting in real-world circumstances. This study proposes a novel one-class classification framework called One-class Graph Embedding Classification (OCGEC) that uses GNNs for model-level backdoor detection with only a little amount of clean data. First, we train thousands of tiny models as raw datasets from a small number of clean datasets. Following that, we design a ingenious model-to-graph method for converting the model's structural details and weight features into graph data. We then pre-train a generative self-supervised graph autoencoder (GAE) to better learn the features of benign models in order to detect backdoor models without knowing the attack strategy. After that, we dynamically combine the GAE and one-class classifier optimization goals to form classification boundaries that distinguish backdoor models from benign models. Our OCGEC combines the powerful representation capabilities of graph neural networks with the utility of one-class classification techniques in the field of anomaly detection. In comparison to other baselines, it achieves AUC scores of more than 98% on a number of tasks, which far exceeds existing methods for detection even when they rely on a huge number of positive and negative samples. Our pioneering application of graphic scenarios for generic backdoor detection can provide new insights that can be used to improve other backdoor defense tasks. Code is available at //github.com/jhy549/OCGEC.
Deep neural networks, including transformers and convolutional neural networks, have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., diseases-related anomalous points in ECG). To address this challenge, we formally reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC. The code will be available at //github.com/xiwenc1/TimeMIL.
Generative adversarial networks (GANs) have emerged as a powerful tool for generating high-fidelity data. However, the main bottleneck of existing approaches is the lack of supervision on the generator training, which often results in undamped oscillation and unsatisfactory performance. To address this issue, we propose an algorithm called Monte Carlo GAN (MCGAN). This approach, utilizing an innovative generative loss function, termly the regression loss, reformulates the generator training as a regression task and enables the generator training by minimizing the mean squared error between the discriminator's output of real data and the expected discriminator of fake data. We demonstrate the desirable analytic properties of the regression loss, including discriminability and optimality, and show that our method requires a weaker condition on the discriminator for effective generator training. These properties justify the strength of this approach to improve the training stability while retaining the optimality of GAN by leveraging strong supervision of the regression loss. Numerical results on CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed MCGAN significantly and consistently improves the existing state-of-the-art GAN models in terms of quality, accuracy, training stability, and learned latent space. Furthermore, the proposed algorithm exhibits great flexibility for integrating with a variety of backbone models to generate spatial images, temporal time-series, and spatio-temporal video data.
Graph neural networks (GNNs) learn to represent nodes by aggregating information from their neighbors. As GNNs increase in depth, their receptive field grows exponentially, leading to high memory costs. Several existing methods address this by sampling a small subset of nodes, scaling GNNs to much larger graphs. These methods are primarily evaluated on homophilous graphs, where neighboring nodes often share the same label. However, most of these methods rely on static heuristics that may not generalize across different graphs or tasks. We argue that the sampling method should be adaptive, adjusting to the complex structural properties of each graph. To this end, we introduce GRAPES, an adaptive sampling method that learns to identify the set of nodes crucial for training a GNN. GRAPES trains a second GNN to predict node sampling probabilities by optimizing the downstream task objective. We evaluate GRAPES on various node classification benchmarks, involving homophilous as well as heterophilous graphs. We demonstrate GRAPES' effectiveness in accuracy and scalability, particularly in multi-label heterophilous graphs. Unlike other sampling methods, GRAPES maintains high accuracy even with smaller sample sizes and, therefore, can scale to massive graphs. Our code is publicly available at //github.com/dfdazac/grapes.
Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
Flexible sensors hold promise for human motion capture (MoCap), offering advantages such as wearability, privacy preservation, and minimal constraints on natural movement. However, existing flexible sensor-based MoCap methods rely on deep learning and necessitate large and diverse labeled datasets for training. These data typically need to be collected in MoCap studios with specialized equipment and substantial manual labor, making them difficult and expensive to obtain at scale. Thanks to the high-linearity of flexible sensors, we address this challenge by proposing a novel Sim2Real Mocap solution based on domain adaptation, eliminating the need for labeled data yet achieving comparable accuracy to supervised learning. Our solution relies on a novel Support-based Domain Adaptation method, namely SuDA, which aligns the supports of the predictive functions rather than the instance-dependent distributions between the source and target domains. Extensive experimental results demonstrate the effectiveness of our method andits superiority over state-of-the-art distribution-based domain adaptation methods in our task.
This work explores an emerging security threat against deep neural networks (DNNs) based image classification, i.e., backdoor attack. In this scenario, the attacker aims to inject a backdoor into the model by manipulating training data, such that the backdoor could be activated by a particular trigger and bootstraps the model to make a target prediction at inference. Currently, most existing data poisoning-based attacks struggle to achieve success at low poisoning ratios, increasing the risk of being defended by defense methods. In this paper, we propose a novel frequency-based backdoor attack via Wavelet Packet Decomposition (WPD), WPD decomposes the original image signal to a spectrogram that contains frequency information with different semantic meanings. We leverage WPD to statistically analyze the frequency distribution of the dataset to infer the key frequency regions the DNNs would focus on, and the trigger information is only injected into the key frequency regions. Our method mainly includes three parts: 1) the selection of the poisoning frequency regions in spectrogram; 2) trigger generation; 3) the generation of the poisoned dataset. Our method is stealthy and precise, evidenced by the 98.12% Attack Success Rate (ASR) on CIFAR-10 with the extremely low poisoning ratio 0.004% (i.e., only 2 poisoned samples among 50,000 training samples) and can bypass most existing defense methods. Besides, we also provide visualization analyses to explain why our method works.
Large language models (LLMs) have raised concerns about potential security threats despite performing significantly in Natural Language Processing (NLP). Backdoor attacks initially verified that LLM is doing substantial harm at all stages, but the cost and robustness have been criticized. Attacking LLMs is inherently risky in security review, while prohibitively expensive. Besides, the continuous iteration of LLMs will degrade the robustness of backdoors. In this paper, we propose TrojanRAG, which employs a joint backdoor attack in the Retrieval-Augmented Generation, thereby manipulating LLMs in universal attack scenarios. Specifically, the adversary constructs elaborate target contexts and trigger sets. Multiple pairs of backdoor shortcuts are orthogonally optimized by contrastive learning, thus constraining the triggering conditions to a parameter subspace to improve the matching. To improve the recall of the RAG for the target contexts, we introduce a knowledge graph to construct structured data to achieve hard matching at a fine-grained level. Moreover, we normalize the backdoor scenarios in LLMs to analyze the real harm caused by backdoors from both attackers' and users' perspectives and further verify whether the context is a favorable tool for jailbreaking models. Extensive experimental results on truthfulness, language understanding, and harmfulness show that TrojanRAG exhibits versatility threats while maintaining retrieval capabilities on normal queries.
A longstanding challenge in mental well-being support is the reluctance of people to adopt psychologically beneficial activities, often due to a lack of motivation, low perceived trustworthiness, and limited personalization of recommendations. Chatbots have shown promise in promoting positive mental health practices, yet their rigid interaction flows and less human-like conversational experiences present significant limitations. In this work, we explore whether the anthropomorphic design (both LLM's persona design and conversational experience design) can enhance users' perception of the system and their willingness to adopt mental well-being activity recommendations. To this end, we introduce Sunnie, an anthropomorphic LLM-based conversational agent designed to offer personalized guidance for mental well-being support through multi-turn conversation and activity recommendations based on positive psychological theory. An empirical user study comparing the user experience with Sunnie and with a traditional survey-based activity recommendation system suggests that the anthropomorphic characteristics of Sunnie significantly enhance users' perception of the system and the overall usability; nevertheless, users' willingness to adopt activity recommendations did not change significantly.
Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.