We develop the Akhiezer iteration, a generalization of the classical Chebyshev iteration, for the inner product-free, iterative solution of indefinite linear systems using orthogonal polynomials for measures supported on multiple, disjoint intervals. The iteration applies to shifted linear solves and can then be used for efficient matrix function approximation. Using the asymptotics of orthogonal polynomials, error bounds are provided. A key component in the efficiency of the method is the ability to compute the first $k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted Stieltjes transforms of these orthogonal polynomials in $\mathrm{O}(k)$ complexity using a numerical Riemann--Hilbert approach. For a special class of orthogonal polynomials, the Akhiezer polynomials, the method can be sped up significantly, with the greatest speedup occurring in the two interval case where important formulae of Akhiezer are employed and the Riemann--Hilbert approach is bypassed.
We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization
Variational flows allow practitioners to learn complex continuous distributions, but approximating discrete distributions remains a challenge. Current methodologies typically embed the discrete target in a continuous space - usually via continuous relaxation or dequantization - and then apply a continuous flow. These approaches involve a surrogate target that may not capture the original discrete target, might have biased or unstable gradients, and can create a difficult optimization problem. In this work, we develop a variational flow family for discrete distributions without any continuous embedding. First, we develop a measure-preserving and discrete (MAD) invertible map that leaves the discrete target invariant, and then create a mixed variational flow (MAD Mix) based on that map. Our family provides access to i.i.d. sampling and density evaluation with virtually no tuning effort. We also develop an extension to MAD Mix that handles joint discrete and continuous models. Our experiments suggest that MAD Mix produces more reliable approximations than continuous-embedding flows while being significantly faster to train.
We introduce a new interpretation of sparse variational approximations for Gaussian processes using inducing points, which can lead to more scalable algorithms than previous methods. It is based on decomposing a Gaussian process as a sum of two independent processes: one spanned by a finite basis of inducing points and the other capturing the remaining variation. We show that this formulation recovers existing approximations and at the same time allows to obtain tighter lower bounds on the marginal likelihood and new stochastic variational inference algorithms. We demonstrate the efficiency of these algorithms in several Gaussian process models ranging from standard regression to multi-class classification using (deep) convolutional Gaussian processes and report state-of-the-art results on CIFAR-10 among purely GP-based models.
A characterization of the representability of neural networks is relevant to comprehend their success in artificial intelligence. This study investigate two topics on ReLU neural network expressivity and their connection with a conjecture related to the minimum depth required for representing any continuous piecewise linear function (CPWL). The topics are the minimal depth representation of the sum and max operations, as well as the exploration of polytope neural networks. For the sum operation, we establish a sufficient condition on the minimal depth of the operands to find the minimal depth of the operation. In contrast, regarding the max operation, a comprehensive set of examples is presented, demonstrating that no sufficient conditions, depending solely on the depth of the operands, would imply a minimal depth for the operation. The study also examine the minimal depth relationship between convex CPWL functions. On polytope neural networks, we investigate several fundamental properties, deriving results equivalent to those of ReLU networks, such as depth inclusions and depth computation from vertices. Notably, we compute the minimal depth of simplices, which is strictly related to the minimal depth conjecture in ReLU networks.
The recent surge in generative AI technologies, such as large language models and diffusion models, have boosted the development of AI applications in various domains, including science, finance, and education. Concurrently, adaptive learning, a concept that has gained substantial interest in the educational sphere, has proven its efficacy in enhancing students' learning efficiency. In this position paper, we aim to shed light on the intersectional studies of these two methods, which combine generative AI with adaptive learning concepts. By presenting discussions about the benefits, challenges, and potentials in this field, we argue that this union will contribute significantly to the development of the next stage learning format in education.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.