Watermarking generative content serves as a vital tool for authentication, ownership protection, and mitigation of potential misuse. Existing watermarking methods face the challenge of balancing robustness and concealment. They empirically inject a watermark that is both invisible and robust and passively achieve concealment by limiting the strength of the watermark, thus reducing the robustness. In this paper, we propose to explicitly introduce a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks. To be specific, we implant a robust watermark in an intermediate diffusion state and then guide the model to hide the watermark in the final generated image. We employ an adversarial optimization algorithm to produce the optimal hiding prompt guiding signal for each watermark. The prompt embedding is optimized to minimize artifacts in the generated image, while the watermark is optimized to achieve maximum strength. The watermark can be verified by reversing the generation process. Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering and shows superior invisibility compared to other state-of-the-art robust watermarking methods.
Mathematical formulas serve as the means of communication between humans and nature, encapsulating the operational laws governing natural phenomena. The concise formulation of these laws is a crucial objective in scientific research and an important challenge for artificial intelligence (AI). While traditional artificial neural networks (MLP) excel at data fitting, they often yield uninterpretable black box results that hinder our understanding of the relationship between variables x and predicted values y. Moreover, the fixed network architecture in MLP often gives rise to redundancy in both network structure and parameters. To address these issues, we propose MetaSymNet, a novel neural network that dynamically adjusts its structure in real-time, allowing for both expansion and contraction. This adaptive network employs the PANGU meta function as its activation function, which is a unique type capable of evolving into various basic functions during training to compose mathematical formulas tailored to specific needs. We then evolve the neural network into a concise, interpretable mathematical expression. To evaluate MetaSymNet's performance, we compare it with four state-of-the-art symbolic regression algorithms across more than 10 public datasets comprising 222 formulas. Our experimental results demonstrate that our algorithm outperforms others consistently regardless of noise presence or absence. Furthermore, we assess MetaSymNet against MLP and SVM regarding their fitting ability and extrapolation capability, these are two essential aspects of machine learning algorithms. The findings reveal that our algorithm excels in both areas. Finally, we compared MetaSymNet with MLP using iterative pruning in network structure complexity. The results show that MetaSymNet's network structure complexity is obviously less than MLP under the same goodness of fit.
Communities and groups often need to make decisions grounded by social norms and preferences, such as when moderating content or providing judgments for aligning AI systems. Prevailing approaches to provide this grounding have primarily centered around constructing high-level guidelines and criteria, similar to legal ``constitutions''. However, it can be challenging to specify social norms and preferences consistently and accurately through constitutions alone. In this work, we take inspiration from legal systems and introduce ``case law grounding'' (CLG) -- a novel approach for grounding decision-making that uses past cases and decisions (precedents) to ground future decisions in a way that can be utilized by human-led processes or implemented through prompting large language models (LLMs). We evaluate how accurately CLG grounds decisions with five groups and communities spread across two decision task domains, comparing against a traditional constitutional grounding approach, and find that in 4 out of 5 groups, decisions produced with CLG were significantly more accurately aligned to ground truth: 16.0--23.3 %-points higher accuracy using the human-led process, and 20.8--32.9 %-points higher when prompting LLMs. We also evaluate the impact of different configurations of CLG, such as the case retrieval window size and whether to enforce binding decisions based on selected precedents, showing support for using binding decisions and preferring larger retrieval windows. Finally, we discuss the limitations of our case-based approach as well as how it may be best used to augment existing constitutional approaches when it comes to aligning human and AI decisions.
Blockchain sharding has emerged as a promising solution to the scalability challenges in traditional blockchain systems by partitioning the network into smaller, manageable subsets called shards. Despite its potential, existing sharding solutions face significant limitations in handling dynamic workloads, ensuring secure cross-shard transactions, and maintaining system integrity. To address these gaps, we propose DynaShard, a dynamic and secure cross-shard transaction processing mechanism designed to enhance blockchain sharding efficiency and security. DynaShard combines adaptive shard management, a hybrid consensus approach, plus an efficient state synchronization and dispute resolution protocol. Our performance evaluation, conducted using a robust experimental setup with real-world network conditions and transaction workloads, demonstrates DynaShard's superior throughput, reduced latency, and improved shard utilization compared to the FTBS method. Specifically, DynaShard achieves up to a 42.6% reduction in latency and a 78.77% improvement in shard utilization under high transaction volumes and varying cross-shard transaction ratios. These results highlight DynaShard's ability to outperform state-of-the-art sharding methods, ensuring scalable and resilient blockchain systems. We believe that DynaShard's innovative approach will significantly impact future developments in blockchain technology, paving the way for more efficient and secure distributed systems.
Understanding relations arising out of interactions among entities can be very difficult, and predicting them is even more challenging. This problem has many applications in various fields, such as financial networks and e-commerce. These relations can involve much more complexities than just involving more than two entities. One such scenario is evolving recursive relations between multiple entities, and so far, this is still an open problem. This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive. We pose the problem in the framework of representation learning of temporal hypergraphs that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction-based decoder to model the occurrence of interaction events. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
Understanding sensor data can be challenging for non-experts because of the complexity and unique semantic meanings of sensor modalities. This calls for intuitive and effective methods to present sensor information. However, creating intuitive sensor data visualizations presents three key challenges: the variability of sensor readings, gaps in domain comprehension, and the dynamic nature of sensor data. To address these issues, we develop Vivar, a novel AR system that integrates multi-modal sensor data and presents 3D volumetric content for visualization. In particular, we introduce a cross-modal embedding approach that maps sensor data into a pre-trained visual embedding space through barycentric interpolation. This allows for accurate and continuous integration of multi-modal sensor information. Vivar also incorporates sensor-aware AR scene generation using foundation models and 3D Gaussian Splatting (3DGS) without requiring domain expertise. In addition, Vivar leverages latent reuse and caching strategies to accelerate 2D and AR content generation. Our extensive experiments demonstrate that our system achieves 11$\times$ latency reduction without compromising quality. A user study involving over 485 participants, including domain experts, demonstrates Vivar's effectiveness in accuracy, consistency, and real-world applicability, paving the way for more intuitive sensor data visualization.
Recent advancements in language modeling have enabled the translation of natural language into code, and the use of execution feedback to improve code generation. However, these methods often rely heavily on pre-existing test cases, which may not always be available or comprehensive. In this work, we propose a novel approach that concurrently trains a code generation model and a test generation model, utilizing execution feedback to refine and enhance the performance of both. We introduce two strategies for test and code data augmentation and a new scoring function for code and test ranking. We experiment on the APPS dataset and demonstrate that our approach can effectively generate and augment test cases, filter and synthesize correct code solutions, and rank the quality of generated code and tests. The results demonstrate that our models, when iteratively trained with an increasing number of test cases and code solutions, outperform those trained on the original dataset.
Confidence calibration of classification models is a technique to estimate the true posterior probability of the predicted class, which is critical for ensuring reliable decision-making in practical applications. Existing confidence calibration methods mostly use statistical techniques to estimate the calibration curve from data or fit a user-defined calibration function, but often overlook fully mining and utilizing the prior distribution behind the calibration curve. However, a well-informed prior distribution can provide valuable insights beyond the empirical data under the limited data or low-density regions of confidence scores. To fill this gap, this paper proposes a new method that integrates the prior distribution behind the calibration curve with empirical data to estimate a continuous calibration curve, which is realized by modeling the sampling process of calibration data as a binomial process and maximizing the likelihood function of the binomial process. We prove that the calibration curve estimating method is Lipschitz continuous with respect to data distribution and requires a sample size of $3/B$ of that required for histogram binning, where $B$ represents the number of bins. Also, a new calibration metric ($TCE_{bpm}$), which leverages the estimated calibration curve to estimate the true calibration error (TCE), is designed. $TCE_{bpm}$ is proven to be a consistent calibration measure. Furthermore, realistic calibration datasets can be generated by the binomial process modeling from a preset true calibration curve and confidence score distribution, which can serve as a benchmark to measure and compare the discrepancy between existing calibration metrics and the true calibration error. The effectiveness of our calibration method and metric are verified in real-world and simulated data.
This work introduces ClustEm4Ano, an anonymization pipeline that can be used for generalization and suppression-based anonymization of nominal textual tabular data. It automatically generates value generalization hierarchies (VGHs) that, in turn, can be used to generalize attributes in quasi-identifiers. The pipeline leverages embeddings to generate semantically close value generalizations through iterative clustering. We applied KMeans and Hierarchical Agglomerative Clustering on $13$ different predefined text embeddings (both open and closed-source (via APIs)). Our approach is experimentally tested on a well-known benchmark dataset for anonymization: The UCI Machine Learning Repository's Adult dataset. ClustEm4Ano supports anonymization procedures by offering more possibilities compared to using arbitrarily chosen VGHs. Experiments demonstrate that these VGHs can outperform manually constructed ones in terms of downstream efficacy (especially for small $k$-anonymity ($2 \leq k \leq 30$)) and therefore can foster the quality of anonymized datasets. Our implementation is made public.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.