亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Gaussian process (GP)-based methodology is proposed to emulate computationally expensive dynamical computer models or simulators. The method relies on emulating the short-time numerical flow map of the model. The flow map returns the solution of a dynamic system at an arbitrary time for a given initial condition. The prediction of the flow map is performed via a GP whose kernel is estimated using random Fourier features. This gives a distribution over the flow map such that each realisation serves as an approximation to the flow map. A realisation is then employed in an iterative manner to perform one-step ahead predictions and forecast the whole time series. Repeating this procedure with multiple draws from the emulated flow map provides a probability distribution over the time series. The mean and variance of that distribution are used as the model output prediction and a measure of the associated uncertainty, respectively. The proposed method is used to emulate several dynamic non-linear simulators including the well-known Lorenz attractor and van der Pol oscillator. The results show that our approach has a high prediction performance in emulating such systems with an accurate representation of the prediction uncertainty.

相關內容

This paper presents a new Expectation Propagation (EP) framework for image restoration using patch-based prior distributions. While Monte Carlo techniques are classically used to sample from intractable posterior distributions, they can suffer from scalability issues in high-dimensional inference problems such as image restoration. To address this issue, EP is used here to approximate the posterior distributions using products of multivariate Gaussian densities. Moreover, imposing structural constraints on the covariance matrices of these densities allows for greater scalability and distributed computation. While the method is naturally suited to handle additive Gaussian observation noise, it can also be extended to non-Gaussian noise. Experiments conducted for denoising, inpainting and deconvolution problems with Gaussian and Poisson noise illustrate the potential benefits of such flexible approximate Bayesian method for uncertainty quantification in imaging problems, at a reduced computational cost compared to sampling techniques.

This paper proposes a new class of real-time optimization schemes to overcome system-model mismatch of uncertain processes. This work's novelty lies in integrating derivative-free optimization schemes and multi-fidelity Gaussian processes within a Bayesian optimization framework. The proposed scheme uses two Gaussian processes for the stochastic system, one emulates the (known) process model, and another, the true system through measurements. In this way, low fidelity samples can be obtained via a model, while high fidelity samples are obtained through measurements of the system. This framework captures the system's behavior in a non-parametric fashion while driving exploration through acquisition functions. The benefit of using a Gaussian process to represent the system is the ability to perform uncertainty quantification in real-time and allow for chance constraints to be satisfied with high confidence. This results in a practical approach that is illustrated in numerical case studies, including a semi-batch photobioreactor optimization problem.

In this study, we propose a function-on-function linear quantile regression model that allows for more than one functional predictor to establish a more flexible and robust approach. The proposed model is first transformed into a finite-dimensional space via the functional principal component analysis paradigm in the estimation phase. It is then approximated using the estimated functional principal component functions, and the estimated parameter of the quantile regression model is constructed based on the principal component scores. In addition, we propose a Bayesian information criterion to determine the optimum number of truncation constants used in the functional principal component decomposition. Moreover, a stepwise forward procedure and the Bayesian information criterion are used to determine the significant predictors for including in the model. We employ a nonparametric bootstrap procedure to construct prediction intervals for the response functions. The finite sample performance of the proposed method is evaluated via several Monte Carlo experiments and an empirical data example, and the results produced by the proposed method are compared with the ones from existing models.

While discrete-event simulators are essential tools for architecture research, design, and development, their practicality is limited by an extremely long time-to-solution for realistic applications under investigation. This work describes a concerted effort, where machine learning (ML) is used to accelerate discrete-event simulation. First, an ML-based instruction latency prediction framework that accounts for both static instruction properties and dynamic processor states is constructed. Then, a GPU-accelerated parallel simulator is implemented based on the proposed instruction latency predictor, and its simulation accuracy and throughput are validated and evaluated against a state-of-the-art simulator. Leveraging modern GPUs, the ML-based simulator outperforms traditional simulators significantly.

We propose a novel deep learning based surrogate model for solving high-dimensional uncertainty quantification and uncertainty propagation problems. The proposed deep learning architecture is developed by integrating the well-known U-net architecture with the Gaussian Gated Linear Network (GGLN) and referred to as the Gated Linear Network induced U-net or GLU-net. The proposed GLU-net treats the uncertainty propagation problem as an image to image regression and hence, is extremely data efficient. Additionally, it also provides estimates of the predictive uncertainty. The network architecture of GLU-net is less complex with 44\% fewer parameters than the contemporary works. We illustrate the performance of the proposed GLU-net in solving the Darcy flow problem under uncertainty under the sparse data scenario. We consider the stochastic input dimensionality to be up to 4225. Benchmark results are generated using the vanilla Monte Carlo simulation. We observe the proposed GLU-net to be accurate and extremely efficient even when no information about the structure of the inputs is provided to the network. Case studies are performed by varying the training sample size and stochastic input dimensionality to illustrate the robustness of the proposed approach.

Random fields are mathematical structures used to model the spatial interaction of random variables along time, with applications ranging from statistical physics and thermodynamics to system's biology and the simulation of complex systems. Despite being studied since the 19th century, little is known about how the dynamics of random fields are related to the geometric properties of their parametric spaces. For example, how can we quantify the similarity between two random fields operating in different regimes using an intrinsic measure? In this paper, we propose a numerical method for the computation of geodesic distances in Gaussian random field manifolds. First, we derive the metric tensor of the underlying parametric space (the 3 x 3 first-order Fisher information matrix), then we derive the 27 Christoffel symbols required in the definition of the system of non-linear differential equations whose solution is a geodesic curve starting at the initial conditions. The fourth-order Runge-Kutta method is applied to numerically solve the non-linear system through an iterative approach. The obtained results show that the proposed method can estimate the geodesic distances for several different initial conditions. Besides, the results reveal an interesting pattern: in several cases, the geodesic curve obtained by reversing the system of differential equations in time does not match the original curve, suggesting the existence of irreversible geometric deformations in the trajectory of a moving reference traveling along a geodesic curve.

In design, fabrication, and control problems, we are often faced with the task of synthesis, in which we must generate an object or configuration that satisfies a set of constraints while maximizing one or more objective functions. The synthesis problem is typically characterized by a physical process in which many different realizations may achieve the goal. This many-to-one map presents challenges to the supervised learning of feed-forward synthesis, as the set of viable designs may have a complex structure. In addition, the non-differentiable nature of many physical simulations prevents efficient direct optimization. We address both of these problems with a two-stage neural network architecture that we may consider to be an autoencoder. We first learn the decoder: a differentiable surrogate that approximates the many-to-one physical realization process. We then learn the encoder, which maps from goal to design, while using the fixed decoder to evaluate the quality of the realization. We evaluate the approach on two case studies: extruder path planning in additive manufacturing and constrained soft robot inverse kinematics. We compare our approach to direct optimization of the design using the learned surrogate, and to supervised learning of the synthesis problem. We find that our approach produces higher quality solutions than supervised learning, while being competitive in quality with direct optimization, at a greatly reduced computational cost.

When signals are measured through physical sensors, they are perturbed by noise. To reduce noise, low-pass filters are commonly employed in order to attenuate high frequency components in the incoming signal, regardless if they come from noise or the actual signal. Therefore, low-pass filters must be carefully tuned in order to avoid significant deterioration of the signal. This tuning requires prior knowledge about the signal, which is often not available in applications such as reinforcement learning or learning-based control. In order to overcome this limitation, we propose an adaptive low-pass filter based on Gaussian process regression. By considering a constant window of previous observations, updates and predictions fast enough for real-world filtering applications can be realized. Moreover, the online optimization of hyperparameters leads to an adaptation of the low-pass behavior, such that no prior tuning is necessary. We show that the estimation error of the proposed method is uniformly bounded, and demonstrate the flexibility and efficiency of the approach in several simulations.

Sparse variational Gaussian process (SVGP) methods are a common choice for non-conjugate Gaussian process inference because of their computational benefits. In this paper, we improve their computational efficiency by using a dual parameterization where each data example is assigned dual parameters, similarly to site parameters used in expectation propagation. Our dual parameterization speeds-up inference using natural gradient descent, and provides a tighter evidence lower bound for hyperparameter learning. The approach has the same memory cost as the current SVGP methods, but it is faster and more accurate.

We show that the output of a (residual) convolutional neural network (CNN) with an appropriate prior over the weights and biases is a Gaussian process (GP) in the limit of infinitely many convolutional filters, extending similar results for dense networks. For a CNN, the equivalent kernel can be computed exactly and, unlike "deep kernels", has very few parameters: only the hyperparameters of the original CNN. Further, we show that this kernel has two properties that allow it to be computed efficiently; the cost of evaluating the kernel for a pair of images is similar to a single forward pass through the original CNN with only one filter per layer. The kernel equivalent to a 32-layer ResNet obtains 0.84% classification error on MNIST, a new record for GPs with a comparable number of parameters.

北京阿比特科技有限公司