亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A new discrete-time shot noise Cox process for spatiotemporal data is proposed. The random intensity is driven by a dependent sequence of latent gamma random measures. Some properties of the latent process are derived, such as an autoregressive representation and the Laplace functional. Moreover, these results are used to derive the moment, predictive, and pair correlation measures of the proposed shot noise Cox process. The model is flexible but still tractable and allows for capturing persistence, global trends, and latent spatial and temporal factors. A Bayesian inference approach is adopted, and an efficient Markov Chain Monte Carlo procedure based on conditional Sequential Monte Carlo is proposed. An application to georeferenced wildfire data illustrates the properties of the model and inference.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Metaverse as-a-Service (MaaS) enables Metaverse tenants to execute their APPlications (MetaAPP) by allocating Metaverse resources in the form of Metaverse service functions (MSF). Usually, each MSF is deployed in a virtual machine (VM) for better resiliency and security. However, these MSFs along with VMs and virtual machine monitors (VMM) running them may encounter software aging after prolonged continuous operation. Then, there is a decrease in MetaAPP dependability, namely, the dependability of the MSF chain (MSFC), consisting of MSFs allocated to MetaAPP. This paper aims to investigate the impact of both software aging and rejuvenation techniques on MetaAPP dependability in the scenarios, where both active components (MSF, VM and VMM) and their backup components are subject to software aging. We develop a hierarchical model to capture behaviors of aging, failure, and recovery by applying Semi-Markov process and reliability block diagram. Numerical analysis and simulation experiments are conducted to evaluate the approximation accuracy of the proposed model and dependability metrics. We then identify the key parameters for improving the MetaAPP/MSFC dependability through sensitivity analysis. The investigation is also made about the influence of various parameters on MetaAPP/MSFC dependability.

Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $C$ bounded clusters can be separated with only a single layer of $C$ quadratic neurons.

Elongated anisotropic Gaussian filters are used for the orientation estimation of fibers. In cases where computed tomography images are noisy, roughly resolved, and of low contrast, they are the method of choice even if being efficient only in virtual 2D slices. However, minor inaccuracies in the anisotropic Gaussian filters can carry over to the orientation estimation. Therefore, this paper proposes a modified algorithm for 2D anisotropic Gaussian filters and shows that this improves their precision. Applied to synthetic images of fiber bundles, it is more accurate and robust to noise. Finally, the effectiveness of the approach is shown by applying it to real-world images of sheet molding compounds.

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of leakage. To address this challenge, we introduce Privacy Protection Language Models (PPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model's knowledge. Our work underscores the potential for Large Language Models as robust privacy protection learners.

To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.

Emotions lie on a continuum, but current models treat emotions as a finite valued discrete variable. This representation does not capture the diversity in the expression of emotion. To better represent emotions we propose the use of natural language descriptions (or prompts). In this work, we address the challenge of automatically generating these prompts and training a model to better learn emotion representations from audio and prompt pairs. We use acoustic properties that are correlated to emotion like pitch, intensity, speech rate, and articulation rate to automatically generate prompts i.e. 'acoustic prompts'. We use a contrastive learning objective to map speech to their respective acoustic prompts. We evaluate our model on Emotion Audio Retrieval and Speech Emotion Recognition. Our results show that the acoustic prompts significantly improve the model's performance in EAR, in various Precision@K metrics. In SER, we observe a 3.8% relative accuracy improvement on the Ravdess dataset.

Multivariate spatial modeling is key to understanding the behavior of materials downstream in a mining operation. The ore recovery depends on the mineralogical composition, which needs to be properly captured by the model to allow for good predictions. Multivariate modeling must also capture the behavior of tailings and waste materials to understand the environmental risks involved in their disposal. However, multivariate spatial modeling is challenging when the variables show complex relationships, such as non-linear correlation, heteroscedastic behavior, or spatial trends. This contribution proposes a novel methodology for general multivariate contexts, with the idea of disaggregating the global non-linear behavior among variables into the spatial domain in a piece-wise linear fashion. We demonstrate that the complex multivariate behavior can be reproduced by looking at local correlations between variables at sample locations, inferred from a local neighborhood, and interpolating these local linear dependencies by using a non-stationary version of the Linear Model of Coregionalization. This mixture of locally varying linear correlations is combined to reproduce the global complex behavior seen in the multivariate distribution. The main challenge is to solve appropriately the interpolation of the known correlation matrices over the domain, as these local correlations defined at sample locations can be endowed with a manifold structure, on which the Euclidean distance is not a suitable metric for interpolation of such correlations. This is addressed by using tools from Riemannian geometry: correlation matrices are interpolated using a weighted Fr\'echet mean of the correlations inferred at sample locations. An application of the procedure is shown in a real case study with good results in terms of accuracy and reproduction of the reference multivariate distributions and semi-variograms.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司