Meta-evaluation studies of system performances in controlled offline evaluation campaigns, like TREC and CLEF, show a need for innovation in evaluating IR-systems. The field of academic search is no exception to this. This might be related to the fact that relevance in academic search is multilayered and therefore the aspect of user-centric evaluation is becoming more and more important. The Living Labs for Academic Search (LiLAS) lab aims to strengthen the concept of user-centric living labs for the domain of academic search by allowing participants to evaluate their retrieval approaches in two real-world academic search systems from the life sciences and the social sciences. To this end, we provide participants with metadata on the systems' content as well as candidate lists with the task to rank the most relevant candidate to the top. Using the STELLA-infrastructure, we allow participants to easily integrate their approaches into the real-world systems and provide the possibility to compare different approaches at the same time.
With the rapid advancement of machine learning models for NLP tasks, collecting high-fidelity labels from AI models is a realistic possibility. Firms now make AI available to customers via predictions as a service (PaaS). This includes PaaS products for healthcare. It is unclear whether these labels can be used for training a local model without expensive annotation checking by in-house experts. In this work, we propose a new framework for Human Correction of AI-Generated Labels (H-COAL). By ranking AI-generated outputs, one can selectively correct labels and approach gold standard performance (100% human labeling) with significantly less human effort. We show that correcting 5% of labels can close the AI-human performance gap by up to 64% relative improvement, and correcting 20% of labels can close the performance gap by up to 86% relative improvement.
Large neural networks pretrained on web-scale corpora are central to modern machine learning. In this paradigm, the distribution of the large, heterogeneous pretraining data rarely matches that of the application domain. This work considers modifying the pretraining distribution in the case where one has a small sample of data reflecting the targeted test conditions. We propose an algorithm motivated by a recent formulation of this setting as an online, bilevel optimization problem. With scalability in mind, our algorithm prioritizes computing gradients at training points which are likely to most improve the loss on the targeted distribution. Empirically, we show that in some cases this approach is beneficial over existing strategies from the domain adaptation literature but may not succeed in other cases. We propose a simple test to evaluate when our approach can be expected to work well and point towards further research to address current limitations.
The rise of advanced technology in project management (PM) highlights a crucial need for inclusiveness. This work examines the enhancement of both inclusivity and efficiency in PM through technological integration, focusing on defining and measuring inclusiveness. This approach illuminates how inclusivity-centered technology can significantly elevate project outcomes. The research navigates through the challenges of achieving inclusivity, mainly biases in learning databases and the design process of these technologies, assessment of transformative potential of these technologies, particularly in automating tasks like data collection and analysis, thus enabling managers to prioritize human-centric aspects of projects. However, the integration of such technology transcends efficiency, indicating a paradigm shift in understanding their societal roles. This shift necessitates a new approach in the development of these systems to prevent perpetuating social inequalities. We proposed a methodology involving criteria development for evaluating the inclusiveness and effectiveness of these technologies. This methodical approach is vital to comprehensively address the challenges and limitations inherent in these systems. Emphasizing the importance of inclusivity, the study advocates for a balance between technological advancement and ethical considerations, calling for a holistic understanding and regulation. In conclusion, the paper underscores that while these technologies can significantly improve outcomes, their mindful integration, ensuring inclusivity, is paramount. This exploration into the ethical and practical aspects of technology in PM contributes to a more informed and balanced approach within the field.
We present a simple functional programming language, called Dual PCF, that implements forward mode automatic differentiation using dual numbers in the framework of exact real number computation. The main new feature of this language is the ability to evaluate correctly up to the precision specified by the user -- in a simple and direct way -- the directional derivative of functionals as well as first order functions. In contrast to other comparable languages, Dual PCF also includes the recursive operator for defining functions and functionals. We provide a wide range of examples of Lipschitz functions and functionals that can be defined in Dual PCF. We use domain theory both to give a denotational semantics to the language and to prove the correctness of the new derivative operator using logical relations. To be able to differentiate functionals -- including on function spaces equipped with their compact-open topology that do not admit a norm -- we develop a domain-theoretic directional derivative that is Scott continuous and extends Clarke's subgradient of real-valued locally Lipschitz maps on Banach spaces to real-valued continuous maps on Hausdorff topological vector spaces. Finally, we show that we can express arbitrary computable linear functionals in Dual PCF.
In farming systems, harvesting operations are tedious, time- and resource-consuming tasks. Based on this, deploying a fleet of autonomous robots to work alongside farmworkers may provide vast productivity and logistics benefits. Then, an intelligent robotic system should monitor human behavior, identify the ongoing activities and anticipate the worker's needs. In this work, the main contribution consists of creating a benchmark model for video-based human pickers detection, classifying their activities to serve in harvesting operations for different agricultural scenarios. Our solution uses the combination of a Mask Region-based Convolutional Neural Network (Mask R-CNN) for object detection and optical flow for motion estimation with newly added statistical attributes of flow motion descriptors, named as Correlation Sensitivity (CS). A classification criterion is defined based on the Kernel Density Estimation (KDE) analysis and K-means clustering algorithm, which are implemented upon in-house collected dataset from different crop fields like strawberry polytunnels and apple tree orchards. The proposed framework is quantitatively analyzed using sensitivity, specificity, and accuracy measures and shows satisfactory results amidst various dataset challenges such as lighting variation, blur, and occlusions.
Personal attacks in the context of social media conversations often lead to fast-paced derailment, leading to even more harmful exchanges being made. State-of-the-art systems for the detection of such conversational derailment often make use of deep learning approaches for prediction purposes. In this paper, we show that an Attention-based BERT architecture, pre-trained on a large Twitter corpus and fine-tuned on our task, is efficient and effective in making such predictions. This model shows clear advantages in performance to the existing LSTM model we use as a baseline. Additionally, we show that this impressive performance can be attained through fine-tuning on a relatively small, novel dataset, particularly after mitigating overfitting issues through synthetic oversampling techniques. By introducing the first transformer based model for forecasting conversational events on Twitter, this work lays the foundation for a practical tool to encourage better interactions on one of the most ubiquitous social media platforms.
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes, making fair assessment of classifiers a challenging task. Metrics such as Balanced Accuracy are commonly used to evaluate a classifier's prediction performance under such scenarios. However, these metrics fall short when classes vary in importance. In this paper, we propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances. Experiments with several state-of-the-art classifiers tested on real-world datasets from three different domains show the effectiveness of our framework - not only in evaluating and ranking classifiers, but also training them.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.