亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel approach to uncovering and analyzing themes in social media messaging. Recognizing the limitations of traditional topic-level analysis, which tends to capture only the overarching patterns, this study emphasizes the need for a finer-grained, theme-focused exploration. Conventional methods of theme discovery, involving manual processes and a human-in-the-loop approach, are valuable but face challenges in scalability, consistency, and resource intensity in terms of time and cost. To address these challenges, we propose a machine-in-the-loop approach that leverages the advanced capabilities of Large Language Models (LLMs). This approach allows for a deeper investigation into the thematic aspects of social media discourse, enabling us to uncover a diverse array of themes, each with unique characteristics and relevance, thereby offering a comprehensive understanding of the nuances present within broader topics. Furthermore, this method efficiently maps the text and the newly discovered themes, enhancing our understanding of the thematic nuances in social media messaging. We employ climate campaigns as a case study and demonstrate that our methodology yields more accurate and interpretable results compared to traditional topic models. Our results not only demonstrate the effectiveness of our approach in uncovering latent themes but also illuminate how these themes are tailored for demographic targeting in social media contexts. Additionally, our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.

相關內容

Despite the success of diffusion-based customization methods on visual content creation, increasing concerns have been raised about such techniques from both privacy and political perspectives. To tackle this issue, several anti-customization methods have been proposed in very recent months, predominantly grounded in adversarial attacks. Unfortunately, most of these methods adopt straightforward designs, such as end-to-end optimization with a focus on adversarially maximizing the original training loss, thereby neglecting nuanced internal properties intrinsic to the diffusion model, and even leading to ineffective optimization in some diffusion time steps.In this paper, we strive to bridge this gap by undertaking a comprehensive exploration of these inherent properties, to boost the performance of current anti-customization approaches. Two aspects of properties are investigated: 1) We examine the relationship between time step selection and the model's perception in the frequency domain of images and find that lower time steps can give much more contributions to adversarial noises. This inspires us to propose an adaptive greedy search for optimal time steps that seamlessly integrates with existing anti-customization methods. 2) We scrutinize the roles of features at different layers during denoising and devise a sophisticated feature-based optimization framework for anti-customization.Experiments on facial benchmarks demonstrate that our approach significantly increases identity disruption, thereby protecting user privacy and copyright. Our code is available at: //github.com/somuchtome/SimAC.

We develop DMAVFL, a novel attack strategy that evades current detection mechanisms. The key idea is to integrate a discriminator with auxiliary classifier that takes a full advantage of the label information (which was completely ignored in previous attacks): on one hand, label information helps to better characterize embeddings of samples from distinct classes, yielding an improved reconstruction performance; on the other hand, computing malicious gradients with label information better mimics the honest training, making the malicious gradients indistinguishable from the honest ones, and the attack much more stealthy. Our comprehensive experiments demonstrate that DMAVFL significantly outperforms existing attacks, and successfully circumvents SOTA defenses for malicious attacks. Additional ablation studies and evaluations on other defenses further underscore the robustness and effectiveness of DMAVFL.

We propose a novel soft-aided hard-decision decoding algorithm for general product-like codes. It achieves error correcting performance similar to that of a soft-decision turbo decoder for staircase and OFEC codes, while maintaining a low complexity.

This comprehensive literature review explores the potential of Augmented Reality and Virtual Reality technologies to enhance the design and testing of autonomous vehicles. By analyzing existing research, the review aims to identify how AR and VR can be leveraged to improve various aspects of autonomous vehicle development, including: creating more realistic and comprehensive testing environments, facilitating the design of user centered interfaces, and safely evaluating driver behavior in complex scenarios. Ultimately, the review highlights AR and VR utilization as a key driver in the development of adaptable testing environments, fostering more dependable autonomous vehicle technology, and ultimately propelling significant advancements within the field.

This paper introduces YOLOv8-TO, a novel approach for reverse engineering of topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with CAD tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.

This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits perfect tightness for interpolators, even within over-parameterized model classes. This bound, which relies on basic principles of Large Deviation Theory, defines a natural measure of the smoothness of a model, characterized by simple real-valued functions. Building upon this bound and the new concept of smoothness, we present an unified theoretical framework revealing why certain interpolators show an exceptional generalization, while others falter. We theoretically show how a wide spectrum of modern learning methodologies, encompassing techniques such as $\ell_2$-norm, distance-from-initialization and input-gradient regularization, in combination with data augmentation, invariant architectures, and over-parameterization, collectively guide the optimizer toward smoother interpolators, which, according to our theoretical framework, are the ones exhibiting superior generalization performance. This study shows that distribution-dependent bounds serve as a powerful tool to understand the complex dynamics behind the generalization capabilities of over-parameterized interpolators.

Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as ``assurance", that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated recently. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.

Software vulnerabilities enable exploitation by malicious hackers, compromising systems and data security. This paper examines bug bounty programs (BBPs) that incentivize ethical hackers to discover and responsibly disclose vulnerabilities to software vendors. Using game-theoretic models, we capture the strategic interactions between software vendors, ethical hackers, and malicious hackers. First, our analysis shows that software vendors can increase expected profits by participating in BBPs, explaining their growing adoption and the success of BBP platforms. Second, we find that vendors with BBPs will release software earlier, albeit with more potential vulnerabilities, as BBPs enable coordinated vulnerability disclosure and mitigation. Third, the optimal number of ethical hackers to invite to a BBP depends solely on the expected number of malicious hackers seeking exploitation. This optimal number of ethical hackers is lower than but increases with the expected malicious hacker count. Finally, higher bounties incentivize ethical hackers to exert more effort, thereby increasing the probability that they will discover severe vulnerabilities first while reducing the success probability of malicious hackers. These findings highlight BBPs' potential benefits for vendors beyond profitability. Earlier software releases are enabled by managing risks through coordinated disclosure. As cybersecurity threats evolve, BBP adoption will likely gain momentum, providing vendors with a valuable tool for enhancing security posture and stakeholder trust. Moreover, BBPs envelop vulnerability identification and disclosure into new market relationships and transactions, impacting software vendors' incentives regarding product security choices like release timing.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

北京阿比特科技有限公司