亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prompt design plays a crucial role in shaping the efficacy of ChatGPT, influencing the model's ability to extract contextually accurate responses. Thus, optimal prompt construction is essential for maximizing the utility and performance of ChatGPT. However, sub-optimal prompt design may necessitate iterative refinement, as imprecise or ambiguous instructions can lead to undesired responses from ChatGPT. Existing studies explore several prompt patterns and strategies to improve the relevance of responses generated by ChatGPT. However, the exploration of constraints that necessitate the submission of multiple prompts is still an unmet attempt. In this study, our contributions are twofold. First, we attempt to uncover gaps in prompt design that demand multiple iterations. In particular, we manually analyze 686 prompts that were submitted to resolve issues related to Java and Python programming languages and identify eleven prompt design gaps (e.g., missing specifications). Such gap exploration can enhance the efficacy of single prompts in ChatGPT. Second, we attempt to reproduce the ChatGPT response by consolidating multiple prompts into a single one. We can completely consolidate prompts with four gaps (e.g., missing context) and partially consolidate prompts with three gaps (e.g., additional functionality). Such an effort provides concrete evidence to users to design more optimal prompts mitigating these gaps. Our study findings and evidence can - (a) save users time, (b) reduce costs, and (c) increase user satisfaction.

相關內容

We delineate the development of a mind-mapping system designed concurrently for both VR and desktop platforms. Employing an iterative methodology with groups of users, we systematically examined and improved various facets of our system, including interactions, communication mechanisms and gamification elements, to streamline the mind-mapping process while augmenting situational awareness and promoting active engagement among collaborators. We also report our observational findings on these facets from this iterative design process.

We present AMCO, a novel navigation method for quadruped robots that adaptively combines vision-based and proprioception-based perception capabilities. Our approach uses three cost maps: general knowledge map; traversability history map; and current proprioception map; which are derived from a robot's vision and proprioception data, and couples them to obtain a coupled traversability cost map for navigation. The general knowledge map encodes terrains semantically segmented from visual sensing, and represents a terrain's typically expected traversability. The traversability history map encodes the robot's recent proprioceptive measurements on a terrain and its semantic segmentation as a cost map. Further, the robot's present proprioceptive measurement is encoded as a cost map in the current proprioception map. As the general knowledge map and traversability history map rely on semantic segmentation, we evaluate the reliability of the visual sensory data by estimating the brightness and motion blur of input RGB images and accordingly combine the three cost maps to obtain the coupled traversability cost map used for navigation. Leveraging this adaptive coupling, the robot can depend on the most reliable input modality available. Finally, we present a novel planner that selects appropriate gaits and velocities for traversing challenging outdoor environments using the coupled traversability cost map. We demonstrate AMCO's navigation performance in different real-world outdoor environments and observe 10.8%-34.9% reduction w.r.t. two stability metrics, and up to 50% improvement in terms of success rate compared to current navigation methods.

In the field of robotics, event-based cameras are emerging as a promising low-power alternative to traditional frame-based cameras for capturing high-speed motion and high dynamic range scenes. This is due to their sparse and asynchronous event outputs. Spiking Neural Networks (SNNs) with their asynchronous event-driven compute, show great potential for extracting the spatio-temporal features from these event streams. In contrast, the standard Analog Neural Networks (ANNs) fail to process event data effectively. However, training SNNs is difficult due to additional trainable parameters (thresholds and leaks), vanishing spikes at deeper layers, and a non-differentiable binary activation function. Furthermore, an additional data structure, membrane potential, responsible for keeping track of temporal information, must be fetched and updated at every timestep in SNNs. To overcome these challenges, we propose a novel SNN-ANN hybrid architecture that combines the strengths of both. Specifically, we leverage the asynchronous compute capabilities of SNN layers to effectively extract the input temporal information. Concurrently, the ANN layers facilitate training and efficient hardware deployment on traditional machine learning hardware such as GPUs. We provide extensive experimental analysis for assigning each layer to be spiking or analog, leading to a network configuration optimized for performance and ease of training. We evaluate our hybrid architecture for optical flow estimation on DSEC-flow and Multi-Vehicle Stereo Event-Camera (MVSEC) datasets. On the DSEC-flow dataset, the hybrid SNN-ANN architecture achieves a 40% reduction in average endpoint error (AEE) with 22% lower energy consumption compared to Full-SNN, and 48% lower AEE compared to Full-ANN, while maintaining comparable energy usage.

The fusion of AI and fashion design has emerged as a promising research area. However, the lack of extensive, interrelated data on clothing and try-on stages has hindered the full potential of AI in this domain. Addressing this, we present the Fashion-Diffusion dataset, a product of multiple years' rigorous effort. This dataset, the first of its kind, comprises over a million high-quality fashion images, paired with detailed text descriptions. Sourced from a diverse range of geographical locations and cultural backgrounds, the dataset encapsulates global fashion trends. The images have been meticulously annotated with fine-grained attributes related to clothing and humans, simplifying the fashion design process into a Text-to-Image (T2I) task. The Fashion-Diffusion dataset not only provides high-quality text-image pairs and diverse human-garment pairs but also serves as a large-scale resource about humans, thereby facilitating research in T2I generation. Moreover, to foster standardization in the T2I-based fashion design field, we propose a new benchmark comprising multiple datasets for evaluating the performance of fashion design models. This work represents a significant leap forward in the realm of AI-driven fashion design, setting a new standard for future research in this field.

The high performance of denoising diffusion models for image generation has paved the way for their application in unsupervised medical anomaly detection. As diffusion-based methods require a lot of GPU memory and have long sampling times, we present a novel and fast unsupervised anomaly detection approach based on latent Bernoulli diffusion models. We first apply an autoencoder to compress the input images into a binary latent representation. Next, a diffusion model that follows a Bernoulli noise schedule is employed to this latent space and trained to restore binary latent representations from perturbed ones. The binary nature of this diffusion model allows us to identify entries in the latent space that have a high probability of flipping their binary code during the denoising process, which indicates out-of-distribution data. We propose a masking algorithm based on these probabilities, which improves the anomaly detection scores. We achieve state-of-the-art performance compared to other diffusion-based unsupervised anomaly detection algorithms while significantly reducing sampling time and memory consumption. The code is available at //github.com/JuliaWolleb/Anomaly_berdiff.

Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, "Conceptual Coverage Across Languages" (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction's impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions.

The ability to detect objects in images at varying scales has played a pivotal role in the design of modern object detectors. Despite considerable progress in removing hand-crafted components and simplifying the architecture with transformers, multi-scale feature maps and/or pyramid design remain a key factor for their empirical success. In this paper, we show that this reliance on either feature pyramids or an hierarchical backbone is unnecessary and a transformer-based detector with scale-aware attention enables the plain detector `SimPLR' whose backbone and detection head are both non-hierarchical and operate on single-scale features. We find through our experiments that SimPLR with scale-aware attention is plain and simple, yet competitive with multi-scale vision transformer alternatives. Compared to the multi-scale and single-scale state-of-the-art, our model scales much better with bigger capacity (self-supervised) models and more pre-training data, allowing us to report a consistently better accuracy and faster runtime for object detection, instance segmentation as well as panoptic segmentation. Code will be released.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

北京阿比特科技有限公司