亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

相關內容

This paper presents RTLFixer, a novel framework enabling automatic syntax errors fixing for Verilog code with Large Language Models (LLMs). Despite LLM's promising capabilities, our analysis indicates that approximately 55% of errors in LLM-generated Verilog are syntax-related, leading to compilation failures. To tackle this issue, we introduce a novel debugging framework that employs Retrieval-Augmented Generation (RAG) and ReAct prompting, enabling LLMs to act as autonomous agents in interactively debugging the code with feedback. This framework demonstrates exceptional proficiency in resolving syntax errors, successfully correcting about 98.5% of compilation errors in our debugging dataset, comprising 212 erroneous implementations derived from the VerilogEval benchmark. Our method leads to 32.3% and 10.1% increase in pass@1 success rates in the VerilogEval-Machine and VerilogEval-Human benchmarks, respectively.

This paper presents RevOrder, a novel technique aimed at improving arithmetic operations in large language models (LLMs) by reversing the output digits in addition, subtraction, and n-digit by 1-digit (nD by 1D) multiplication tasks. Our method significantly reduces the Count of Sequential Intermediate Digits (CSID) to $\mathcal{O}(1)$, a new metric we introduce to assess equation complexity. Through comprehensive testing, RevOrder not only achieves perfect accuracy in basic arithmetic operations but also substantially boosts LLM performance in division tasks, particularly with large numbers where traditional models struggle. Implementation of RevOrder is cost-effective for both training and inference phases. Moreover, applying RevOrder to fine-tune the LLaMA2-7B model on the GSM8K math task results in a considerable improvement, reducing equation calculation errors by 46% and increasing overall scores from 41.6 to 44.4.

The rapid development of generative AI (GenAI) models in computer vision necessitates effective evaluation methods to ensure their quality and fairness. Existing tools primarily focus on dataset quality assurance and model explainability, leaving a significant gap in GenAI output evaluation during model development. Current practices often depend on developers' subjective visual assessments, which may lack scalability and generalizability. This paper bridges this gap by conducting a formative study with GenAI model developers in an industrial setting. Our findings led to the development of GenLens, a visual analytic interface designed for the systematic evaluation of GenAI model outputs during the early stages of model development. GenLens offers a quantifiable approach for overviewing and annotating failure cases, customizing issue tags and classifications, and aggregating annotations from multiple users to enhance collaboration. A user study with model developers reveals that GenLens effectively enhances their workflow, evidenced by high satisfaction rates and a strong intent to integrate it into their practices. This research underscores the importance of robust early-stage evaluation tools in GenAI development, contributing to the advancement of fair and high-quality GenAI models.

Bloom Filters are a space-efficient data structure used for the testing of membership in a set that errs only in the False Positive direction. However, the standard analysis that measures this False Positive rate provides a form of worst case bound that is both overly conservative for the majority of network applications that utilize Bloom Filters, and reduces accuracy by not taking into account the actual state (number of bits set) of the Bloom Filter after each arrival. In this paper, we more accurately characterize the False Positive dynamics of Bloom Filters as they are commonly used in networking applications. In particular, network applications often utilize a Bloom Filter that "recycles": it repeatedly fills, and upon reaching a certain level of saturation, empties and fills again. In this context, it makes more sense to evaluate performance using the average False Positive rate instead of the worst case bound. We show how to efficiently compute the average False Positive rate of recycling Bloom Filter variants via renewal and Markov models. We apply our models to both the standard Bloom Filter and a "two-phase" variant, verify the accuracy of our model with simulations, and find that the previous analysis' worst-case formulation leads to up to a 30\% reduction in the efficiency of Bloom Filter when applied in network applications, while two-phase overhead diminishes as the needed False Positive rate is tightened.

This paper introduces a novel perspective to significantly mitigate catastrophic forgetting in continuous learning (CL), which emphasizes models' capacity to preserve existing knowledge and assimilate new information. Current replay-based methods treat every task and data sample equally and thus can not fully exploit the potential of the replay buffer. In response, we propose COgnitive REplay (CORE), which draws inspiration from human cognitive review processes. CORE includes two key strategies: Adaptive Quantity Allocation and Quality-Focused Data Selection. The former adaptively modulates the replay buffer allocation for each task based on its forgetting rate, while the latter guarantees the inclusion of representative data that best encapsulates the characteristics of each task within the buffer. Our approach achieves an average accuracy of 37.95% on split-CIFAR10, surpassing the best baseline method by 6.52%. Additionally, it significantly enhances the accuracy of the poorest-performing task by 6.30% compared to the top baseline.

This paper presents the speech restoration and enhancement system created by the 1024K team for the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. Our system consists of a generative adversarial network (GAN) in complex-domain for speech restoration and a fine-grained multi-band fusion module for speech enhancement. In the blind test set of SSI, the proposed system achieves an overall mean opinion score (MOS) of 3.49 based on ITU-T P.804 and a Word Accuracy Rate (WAcc) of 0.78 for the real-time track, as well as an overall P.804 MOS of 3.43 and a WAcc of 0.78 for the non-real-time track, ranking 1st in both tracks.

We introduce AlphaRank, an artificial intelligence approach to address the fixed-budget ranking and selection (R&S) problems. We formulate the sequential sampling decision as a Markov decision process and propose a Monte Carlo simulation-based rollout policy that utilizes classic R&S procedures as base policies for efficiently learning the value function of stochastic dynamic programming. We accelerate online sample-allocation by using deep reinforcement learning to pre-train a neural network model offline based on a given prior. We also propose a parallelizable computing framework for large-scale problems, effectively combining "divide and conquer" and "recursion" for enhanced scalability and efficiency. Numerical experiments demonstrate that the performance of AlphaRank is significantly improved over the base policies, which could be attributed to AlphaRank's superior capability on the trade-off among mean, variance, and induced correlation overlooked by many existing policies.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司