It is known that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal to the length of the longest shared secret key that two parties can establish via a probabilistic protocol with interaction on a public channel, assuming that the parties hold as their inputs x and y respectively. We determine the worst-case communication complexity of this problem for the setting where the parties can use private sources of random bits. We show that for some x, y the communication complexity of the secret key agreement does not decrease even if the parties have to agree on a secret key whose size is much smaller than the mutual information between x and y. On the other hand, we discuss examples of x, y such that the communication complexity of the protocol declines gradually with the size of the derived secret key. The proof of the main result uses spectral properties of appropriate graphs and the expander mixing lemma, as well as information theoretic techniques.
Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that, for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients have an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.
The Bayesian Context Trees (BCT) framework is a recently introduced, general collection of statistical and algorithmic tools for modelling, analysis and inference with discrete-valued time series. The foundation of this development is built in part on some well-known information-theoretic ideas and techniques, including Rissanen's tree sources and Willems et al.'s context-tree weighting algorithm. This paper presents a collection of theoretical results that provide mathematical justifications and further insight into the BCT modelling framework and the associated practical tools. It is shown that the BCT prior predictive likelihood (the probability of a time series of observations averaged over all models and parameters) is both pointwise and minimax optimal, in agreement with the MDL principle and the BIC criterion. The posterior distribution is shown to be asymptotically consistent with probability one (over both models and parameters), and asymptotically Gaussian (over the parameters). And the posterior predictive distribution is also shown to be asymptotically consistent with probability one.
We present an improved post-quantum version of Sakalauskas matrix power function key-agreement protocol, using rectangular matrices instead the original square ones. Sakalauskas matrix power function is an efficient and secure way to generate a shared secret key, and using rectangular matrices can provide additional flexibility and security in some applications. This method reduces the computational complexity by allowing smaller random integers matrices while maintaining equal security. Another advantage of using the rank-deficient rectangular matrices over key agreement protocols is that it provides more protection against several linearization attacks.
This work considers the problem of mitigating information leakage between communication and sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a key attribute, e.g., location. For independent and identically distributed states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The partial characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with binary joint communication and sensing models.
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient framework for distributed machine learning using training data distributed at edge devices. This framework enables all edge devices to transmit model updates simultaneously over the entire available bandwidth, allowing for over-the-air aggregation. A one-bit digital over-the-air aggregation (OBDA) scheme has been recently proposed, featuring one-bit gradient quantization at edge devices and majority-voting based decoding at the edge server. However, the low-resolution one-bit gradient quantization slows down the model convergence and leads to performance degradation. On the other hand, the aggregation errors caused by fading channels in Air-FEEL is still remained to be solved. To address these issues, we propose the error-feedback one-bit broadband digital aggregation (EFOBDA) and an optimized power control policy. To this end, we first provide a theoretical analysis to evaluate the impact of error feedback on the convergence of FL with EFOBDA. The analytical results show that, by setting an appropriate feedback strength, EFOBDA is comparable to the Air-FEEL without quantization, thus enhancing the performance of OBDA. Then, we further introduce a power control policy by maximizing the convergence rate under instantaneous power constraints. The convergence analysis and optimized power control policy are verified by the experiments, which show that the proposed scheme achieves significantly faster convergence and higher test accuracy in image classification tasks compared with the one-bit quantization scheme without error feedback or optimized power control policy.
Given a sound first-order p-time theory $T$ capable of formalizing syntax of first-order logic we define a p-time function $g_T$ that stretches all inputs by one bit and we use its properties to show that $T$ must be incomplete. We leave it as an open problem whether for some $T$ the range of $g_T$ intersects all infinite NP sets (i.e. whether it is a proof complexity generator hard for all proof systems). A propositional version of the construction shows that at least one of the following three statements is true: - there is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm), - $E \not\subseteq P/poly$, - there exists function $h$ that stretches all inputs by one bit, is computable in sub-exponential time and its range $Rng(h)$ intersects all infinite NP sets.
We investigate the parameterized complexity of several problems formalizing cluster identification in graphs. In other words we ask whether a graph contains a large enough and sufficiently connected subgraph. We study here three relaxations of CLIQUE: $s$-CLUB and $s$-CLIQUE, in which the relaxation is focused on the distances in respectively the cluster and the original graph, and $\gamma$-COMPLETE SUBGRAPH in which the relaxation is made on the minimal degree in the cluster. As these three problems are known to be NP-hard, we study here their parameterized complexities. We prove that $s$-CLUB and $s$-CLIQUE are NP-hard even restricted to graphs of degeneracy $\le 3$ whenever $s \ge 3$, and to graphs of degeneracy $\le 2$ whenever $s \ge 5$, which is a strictly stronger result than its W[1]-hardness parameterized by the degeneracy. We also obtain that these problems are solvable in polynomial time on graphs of degeneracy $1$. Concerning $\gamma$-COMPLETE SUBGRAPH, we prove that it is W[1]-hard parameterized by both the degeneracy, which implies the W[1]-hardness parameterized by the number of vertices in the $\gamma$-complete-subgraph, and the number of elements outside the $\gamma$-complete subgraph.
We study the hidden-action principal-agent problem in an online setting. In each round, the principal posts a contract that specifies the payment to the agent based on each outcome. The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal. The principal observes the outcome and receives utility from the agent's choice of action. Based on past observations, the principal dynamically adjusts the contracts with the goal of maximizing her utility. We introduce an online learning algorithm and provide an upper bound on its Stackelberg regret. We show that when the contract space is $[0,1]^m$, the Stackelberg regret is upper bounded by $\widetilde O(\sqrt{m} \cdot T^{1-1/(2m+1)})$, and lower bounded by $\Omega(T^{1-1/(m+2)})$, where $\widetilde O$ omits logarithmic factors. This result shows that exponential-in-$m$ samples are sufficient and necessary to learn a near-optimal contract, resolving an open problem on the hardness of online contract design. Moreover, when contracts are restricted to some subset $\mathcal{F} \subset [0,1]^m$, we define an intrinsic dimension of $\mathcal{F}$ that depends on the covering number of the spherical code in the space and bound the regret in terms of this intrinsic dimension. When $\mathcal{F}$ is the family of linear contracts, we show that the Stackelberg regret grows exactly as $\Theta(T^{2/3})$. The contract design problem is challenging because the utility function is discontinuous. Bounding the discretization error in this setting has been an open problem. In this paper, we identify a limited set of directions in which the utility function is continuous, allowing us to design a new discretization method and bound its error. This approach enables the first upper bound with no restrictions on the contract and action space.
The ability to compose code in a modular fashion is important to the construction of large programs. In the logic programming setting, it is desirable that such capabilities be realized through logic-based devices. We describe an approach for doing this here. In our scheme a module corresponds to a block of code whose external view is mediated by a signature. Thus, signatures impose a form of hiding that is explained logically via existential quantifications over predicate, function and constant names. Modules interact through the mechanism of accumulation that translates into conjoining the clauses in them while respecting the scopes of existential quantifiers introduced by signatures. We show that this simple device for statically structuring name spaces suffices for realizing features related to code scoping for which the dynamic control of predicate definitions was earlier considered necessary. The module capabilities we present have previously been implemented via the compile-time inlining of accumulated modules. This approach does not support separate compilation. We redress this situation by showing how each distinct module can be compiled separately and inlining can be realized by a later, complementary and equally efficient linking phase.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.