亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new algorithm for the rigorous integration of the variational equation (i.e. producing $\mathcal C^1$ estimates) for a class of dissipative PDEs on the torus. As an application for some parameter value for the Kuramoto-Sivashinsky PDE on the line with odd and periodic boundary conditions we prove the existence of infinite number of homo- and heteroclinic orbits to two periodic orbits. The proof is computer assisted.

相關內容

We give a polynomial-time algorithm for OnlineSetCover with a competitive ratio of $O(\log mn)$ when the elements are revealed in random order, essentially matching the best possible offline bound of $O(\log n)$ and circumventing the $\Omega(\log m \log n)$ lower bound known in adversarial order. We also extend the result to solving pure covering IPs when constraints arrive in random order. The algorithm is a multiplicative-weights-based round-and-solve approach we call LearnOrCover. We maintain a coarse fractional solution that is neither feasible nor monotone increasing, but can nevertheless be rounded online to achieve the claimed guarantee (in the random order model). This gives a new offline algorithm for SetCover that performs a single pass through the elements, which may be of independent interest.

Since Harrow, Hassidim, and Lloyd (2009) showed that a system of linear equations with $N$ variables and condition number $\kappa$ can be solved on a quantum computer in $\operatorname{poly}(\log(N), \kappa)$ time, exponentially faster than any classical algorithms, its improvements and applications have been extensively investigated. The state-of-the-art quantum algorithm for this problem is due to Costa, An, Sanders, Su, Babbush, and Berry (2022), with optimal query complexity $\Theta(\kappa)$. An important question left is whether parallelism can bring further optimization. In this paper, we study the limitation of parallel quantum computing on this problem. We show that any quantum algorithm for solving systems of linear equations with time complexity $\operatorname{poly}(\log(N), \kappa)$ has a lower bound of $\Omega(\kappa)$ on the depth of queries, which is tight up to a constant factor.

The $n$-way number partitioning problem is a classic problem in combinatorial optimization, with applications to diverse settings such as fair allocation and machine scheduling. All these problems are NP-hard, but various approximation algorithms are known. We consider three closely related kinds of approximations. The first two variants optimize the partition such that: in the first variant some fixed number $s$ of items can be \emph{split} between two or more bins and in the second variant we allow at most a fixed number $t$ of \emph{splittings}. The third variant is a decision problem: the largest bin sum must be within a pre-specified interval, parameterized by a fixed rational number $u$ times the largest item size. When the number of bins $n$ is unbounded, we show that every variant is strongly {\sf NP}-complete. When the number of bins $n$ is fixed, the running time depends on the fixed parameters $s,t,u$. For each variant, we give a complete picture of its running time. For $n=2$, the running time is easy to identify. Our main results consider any fixed integer $n \geq 3$. Using a two-way polynomial-time reduction between the first and the third variant, we show that $n$-way number-partitioning with $s$ split items can be solved in polynomial time if $s \geq n-2$, and it is {\sf NP}-complete otherwise. Also, $n$-way number-partitioning with $t$ splittings can be solved in polynomial time if $t \geq n-1$, and it is {\sf NP}-complete otherwise. Finally, we show that the third variant can be solved in polynomial time if $u \geq (n-2)/n$, and it is {\sf NP}-complete otherwise. Our positive results for the optimization problems consider both min-max and max-min versions. Using the same reduction, and we provide a fully polynomial-time approximation scheme for the case where the number of split items is lower than $n-2$.

We analyze a goal-oriented adaptive algorithm that aims to efficiently compute the quantity of interest $G(u^\star)$ with a linear goal functional $G$ and the solution $u^\star$ to a general second-order nonsymmetric linear elliptic partial differential equation. The current state of the analysis of iterative algebraic solvers for nonsymmetric systems lacks the contraction property in the norms that are prescribed by the functional analytic setting. This seemingly prevents their application in the optimality analysis of goal-oriented adaptivity. As a remedy, this paper proposes a goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM). It employs a nested loop with a contractive symmetrization procedure, e.g., the Zarantonello iteration, and a contractive algebraic solver, e.g., an optimal multigrid solver. The various iterative procedures require well-designed stopping criteria such that the adaptive algorithm can effectively steer the local mesh refinement and the computation of the inexact discrete approximations. The main results consist of full linear convergence of the proposed adaptive algorithm and the proof of optimal convergence rates with respect to both degrees of freedom and total computational cost (i.e., optimal complexity). Numerical experiments confirm the theoretical results and investigate the selection of the parameters.

We prove that for any integers $\alpha, \beta > 1$, the existential fragment of the first-order theory of the structure $\langle \mathbb{Z}; 0,1,<, +, \alpha^{\mathbb{N}}, \beta^{\mathbb{N}}\rangle$ is decidable (where $\alpha^{\mathbb{N}}$ is the set of positive integer powers of $\alpha$, and likewise for $\beta^{\mathbb{N}}$). On the other hand, we show by way of hardness that decidability of the existential fragment of the theory of $\langle \mathbb{N}; 0,1, <, +, x\mapsto \alpha^x, x \mapsto \beta^x\rangle$ for any multiplicatively independent $\alpha,\beta > 1$ would lead to mathematical breakthroughs regarding base-$\alpha$ and base-$\beta$ expansions of certain transcendental numbers.

We develop a novel algorithm to construct a congestion-approximator with polylogarithmic quality on a capacitated, undirected graph in nearly-linear time. Our approach is the first *bottom-up* hierarchical construction, in contrast to previous *top-down* approaches including that of Racke, Shah, and Taubig (SODA 2014), the only other construction achieving polylogarithmic quality that is implementable in nearly-linear time (Peng, SODA 2016). Similar to Racke, Shah, and Taubig, our construction at each hierarchical level requires calls to an approximate max-flow/min-cut subroutine. However, the main advantage to our bottom-up approach is that these max-flow calls can be implemented directly *without recursion*. More precisely, the previously computed levels of the hierarchy can be converted into a *pseudo-congestion-approximator*, which then translates to a max-flow algorithm that is sufficient for the particular max-flow calls used in the construction of the next hierarchical level. As a result, we obtain the first non-recursive algorithms for congestion-approximator and approximate max-flow that run in nearly-linear time, a conceptual improvement to the aforementioned algorithms that recursively alternate between the two problems.

Anderson acceleration (AA) is widely used for accelerating the convergence of an underlying fixed-point iteration $\bm{x}_{k+1} = \bm{q}( \bm{x}_{k} )$, $k = 0, 1, \ldots$, with $\bm{x}_k \in \mathbb{R}^n$, $\bm{q} \colon \mathbb{R}^n \to \mathbb{R}^n$. Despite AA's widespread use, relatively little is understood theoretically about the extent to which it may accelerate the underlying fixed-point iteration. To this end, we analyze a restarted variant of AA with a restart size of one, a method closely related to GMRES(1). We consider the case of $\bm{q}( \bm{x} ) = M \bm{x} + \bm{b}$ with matrix $M \in \mathbb{R}^{n \times n}$ either symmetric or skew-symmetric. For both classes of $M$ we compute the worst-case root-average asymptotic convergence factor of the AA method, partially relying on conjecture in the symmetric setting, proving that it is strictly smaller than that of the underlying fixed-point iteration. For symmetric $M$, we show that the AA residual iteration corresponds to a fixed-point iteration for solving an eigenvector-dependent nonlinear eigenvalue problem (NEPv), and we show how this can result in the convergence factor strongly depending on the initial iterate, which we quantify exactly in certain special cases. Conversely, for skew-symmetric $M$ we show that the AA residual iteration is closely related to a power iteration for $M$, and how this results in the convergence factor being independent of the initial iterate. Supporting numerical results are given, which also indicate the theory is applicable to the more general setting of nonlinear $\bm{q}$ with Jacobian at the fixed point that is symmetric or skew symmetric.

We propose an algorithm to solve optimization problems constrained by partial (ordinary) differential equations under uncertainty, with almost sure constraints on the state variable. To alleviate the computational burden of high-dimensional random variables, we approximate all random fields by the tensor-train decomposition. To enable efficient tensor-train approximation of the state constraints, the latter are handled using the Moreau-Yosida penalty, with an additional smoothing of the positive part (plus/ReLU) function by a softplus function. In a special case of a quadratic cost minimization constrained by linear elliptic partial differential equations, and some additional constraint qualification, we prove strong convergence of the regularized solution to the optimal control. This result also proposes a practical recipe for selecting the smoothing parameter as a function of the penalty parameter. We develop a second order Newton type method with a fast matrix-free action of the approximate Hessian to solve the smoothed Moreau-Yosida problem. This algorithm is tested on benchmark elliptic problems with random coefficients, optimization problems constrained by random elliptic variational inequalities, and a real-world epidemiological model with 20 random variables. These examples demonstrate mild (at most polynomial) scaling with respect to the dimension and regularization parameters.

Brown and Walker (1997) showed that GMRES determines a least squares solution of $ A x = b $ where $ A \in {\bf R}^{n \times n} $ without breakdown for arbitrary $ b, x_0 \in {\bf R}^n $ if and only if $A$ is range-symmetric, i.e. $ {\cal R} (A^{\rm T}) = {\cal R} (A) $, where $ A $ may be singular and $ b $ may not be in the range space ${\cal R} A)$ of $A$. In this paper, we propose applying GMRES to $ A C A^{\rm T} z = b $, where $ C \in {\bf R}^{n \times n} $ is symmetric positive definite. This determines a least squares solution $ x = CA^{\rm T} z $ of $ A x = b $ without breakdown for arbitrary (singular) matrix $A \in {\bf R}^{n \times n}$ and $ b \in {\bf R}^n $. To make the method numerically stable, we propose using the pseudoinverse with an appropriate threshold parameter to suppress the influence of tiny singular values when solving the severely ill-conditioned Hessenberg systems which arise in the Arnoldi process of GMRES when solving inconsistent range-symmetric systems. Numerical experiments show that the method taking $C$ to be the identity matrix and the inverse matrix of the diagonal matrix whose diagonal elements are the diagonal of $A A^{\rm T}$ gives a least squares solution even when $A$ is not range-symmetric, including the case when $ {\rm index}(A) >1$.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司