This work introduces a stabilised finite element formulation for the Stokes flow problem with a nonlinear slip boundary condition of friction type. The boundary condition is enforced with the help of an additional Lagrange multiplier and the stabilised formulation is based on simultaneously stabilising both the pressure and the Lagrange multiplier. We establish the stability and the a priori error analyses, and perform a numerical convergence study in order to verify the theory.
Engineers are often faced with the decision to select the most appropriate model for simulating the behavior of engineered systems, among a candidate set of models. Experimental monitoring data can generate significant value by supporting engineers toward such decisions. Such data can be leveraged within a Bayesian model updating process, enabling the uncertainty-aware calibration of any candidate model. The model selection task can subsequently be cast into a problem of decision-making under uncertainty, where one seeks to select the model that yields an optimal balance between the reward associated with model precision, in terms of recovering target Quantities of Interest (QoI), and the cost of each model, in terms of complexity and compute time. In this work, we examine the model selection task by means of Bayesian decision theory, under the prism of availability of models of various refinements, and thus varying levels of fidelity. In doing so, we offer an exemplary application of this framework on the IMAC-MVUQ Round-Robin Challenge. Numerical investigations show various outcomes of model selection depending on the target QoI.
We construct finite element de~Rham complexes of higher and possibly non-uniform polynomial order in finite element exterior calculus (FEEC). Starting from the finite element differential complex of lowest-order, known as the complex of Whitney forms, we incrementally construct the higher-order complexes by adjoining exact local complexes associated to simplices. We define a commuting canonical interpolant. On the one hand, this research provides a base for studying $hp$-adaptive methods in finite element exterior calculus. On the other hand, our construction of higher-order spaces enables a new tool in numerical analysis which we call "partially localized flux reconstruction". One major application of this concept is in the area of equilibrated a~posteriori error estimators: we generalize the Braess-Sch\"oberl error estimator to edge elements of higher and possibly non-uniform order.
The accuracy of solving partial differential equations (PDEs) on coarse grids is greatly affected by the choice of discretization schemes. In this work, we propose to learn time integration schemes based on neural networks which satisfy three distinct sets of mathematical constraints, i.e., unconstrained, semi-constrained with the root condition, and fully-constrained with both root and consistency conditions. We focus on the learning of 3-step linear multistep methods, which we subsequently applied to solve three model PDEs, i.e., the one-dimensional heat equation, the one-dimensional wave equation, and the one-dimensional Burgers' equation. The results show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method. Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids. On a grid that is 4 times coarser than the reference grid, the mean square error shows a reduction of up to an order of magnitude for some of the heat equation cases, and a substantial improvement in phase prediction for the wave equation. On a 32 times coarser grid, the mean square error for the Burgers' equation can be reduced by up to 35% to 40%.
We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function $T_k^n$ (with output 1 only when at least $k$ out of $n$ input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form $c(k,n)^d$, where $d$ is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case.
We characterize the convergence properties of traditional best-response (BR) algorithms in computing solutions to mixed-integer Nash equilibrium problems (MI-NEPs) that turn into a class of monotone Nash equilibrium problems (NEPs) once relaxed the integer restrictions. We show that the sequence produced by a Jacobi/Gauss-Seidel BR method always approaches a bounded region containing the entire solution set of the MI-NEP, whose tightness depends on the problem data, and it is related to the degree of strong monotonicity of the relaxed NEP. When the underlying algorithm is applied to the relaxed NEP, we establish data-dependent complexity results characterizing its convergence to the unique solution of the NEP. In addition, we derive one of the very few sufficient conditions for the existence of solutions to MI-NEPs. The theoretical results developed bring important practical advantages that are illustrated on a numerical instance of a smart building control application.
This work is concerned with cone-beam computed tomography with circular source trajectory, where the reconstruction inverse problem requires an accurate knowledge of source, detector and rotational axis relative positions and orientations. We address this problem as a preceding step of the reconstruction process directly from the acquired projections. The method estimates both the detector shift (orthogonal to focal and rotational axes) and the in-plane detector rotation, relative to source and rotational axis. The obtained algorithm is based on a fan-beam symmetry condition and the variable projection optimization approach with a low computational cost. Therefore, the alignment problem for fan-beam tomography is addressed as well. The methods are validated with simulated and real industrial tomographic data with code examples available for both fan- and cone-beam geometries.
The present work is concerned with the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. The considered partial differential equations of Schr{\"o}dinger and parabolic type comprise the Laplacian, a potential acting as multiplication operator, and a cubic nonlinearity. Moreover, an invariance principle is deduced that has a significant impact on the efficient realisation of the resulting modified operator splitting methods for the Schr{\"o}dinger case.} Numerical illustrations for the time-dependent Gross--Pitaevskii equation in the physically most relevant case of three space dimensions and for its parabolic counterpart related to ground state and excited state computations confirm the benefits of the proposed fourth-order modified operator splitting method in comparison with standard splitting methods. The presented results are novel and of particular interest from both, a theoretical perspective to inspire future investigations of modified operator splitting methods for other classes of nonlinear evolution equations and a practical perspective to advance the reliable and efficient simulation of Gross--Pitaevskii systems in real and imaginary time.
We introduce a novel algorithm that converges to level-set convex viscosity solutions of high-dimensional Hamilton-Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton-Jacobi equation for the Tukey depth, which is a statistical depth measure of data points. A main contribution of our work is a new monotone scheme for approximating the direction of the gradient, which allows for monotone discretizations of pure partial derivatives in the direction of, and orthogonal to, the gradient. We provide a convergence analysis of the algorithm on both regular Cartesian grids and unstructured point clouds in any dimension and present numerical experiments that demonstrate the effectiveness of the algorithm in approximating solutions of the affine flow in two dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST and FashionMNIST.
We propose a novel surrogate modelling approach to efficiently and accurately approximate the response of complex dynamical systems driven by time-varying exogenous excitations over extended time periods. Our approach, namely manifold nonlinear autoregressive modelling with exogenous input (mNARX), involves constructing a problem-specific exogenous input manifold that is optimal for constructing autoregressive surrogates. The manifold, which forms the core of mNARX, is constructed incrementally by incorporating the physics of the system, as well as prior expert- and domain- knowledge. Because mNARX decomposes the full problem into a series of smaller sub-problems, each with a lower complexity than the original, it scales well with the complexity of the problem, both in terms of training and evaluation costs of the final surrogate. Furthermore, mNARX synergizes well with traditional dimensionality reduction techniques, making it highly suitable for modelling dynamical systems with high-dimensional exogenous inputs, a class of problems that is typically challenging to solve. Since domain knowledge is particularly abundant in physical systems, such as those found in civil and mechanical engineering, mNARX is well suited for these applications. We demonstrate that mNARX outperforms traditional autoregressive surrogates in predicting the response of a classical coupled spring-mass system excited by a one-dimensional random excitation. Additionally, we show that mNARX is well suited for emulating very high-dimensional time- and state-dependent systems, even when affected by active controllers, by surrogating the dynamics of a realistic aero-servo-elastic onshore wind turbine simulator. In general, our results demonstrate that mNARX offers promising prospects for modelling complex dynamical systems, in terms of accuracy and efficiency.
Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.