亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we discuss the numerical solution on a simple 2D domain of the Helmoltz equation with mixed boundary conditions. The so called radiation problem depends on the wavenumber constant parameter k and it is inspired here by medical applications, where a transducer emits a pulse at a given frequency. This problem has been successfully solved in the past with the classical Finite Element Method (FEM) for relative small values of k. But in modern applications the values of k can be of order of thousands and FEM faces up several numerical difficulties. To overcome these difficulties we solve the radiation problem using the Isogeometric Analysis (IgA), a kind of generalization of FEM. Starting with the variational formulation of the radiation problem, we show with details how to apply the isogeometric approach in order to compute the coefficients of the approximated solution of radiation problem in terms of the B-spline basis functions. Our implementation of IgA using GeoPDEs software shows that isogeometric approach is superior than FEM, since it is able to reduce substantially the pollution error, especially for high values of k, producing additionally smoother solutions which depend on less degrees of freedom.

相關內容

Thanks to its fine balance between model flexibility and interpretability, the nonparametric additive model has been widely used, and variable selection for this type of model has been frequently studied. However, none of the existing solutions can control the false discovery rate (FDR) unless the sample size tends to infinity. The knockoff framework is a recent proposal that can address this issue, but few knockoff solutions are directly applicable to nonparametric models. In this article, we propose a novel kernel knockoffs selection procedure for the nonparametric additive model. We integrate three key components: the knockoffs, the subsampling for stability, and the random feature mapping for nonparametric function approximation. We show that the proposed method is guaranteed to control the FDR for any sample size, and achieves a power that approaches one as the sample size tends to infinity. We demonstrate the efficacy of our method through intensive simulations and comparisons with the alternative solutions. Our proposal thus makes useful contributions to the methodology of nonparametric variable selection, FDR-based inference, as well as knockoffs.

Approximate message passing (AMP) is a promising technique for unknown signal reconstruction of certain high-dimensional linear systems with non-Gaussian signaling. A distinguished feature of the AMP-type algorithms is that their dynamics can be rigorously described by state evolution. However, state evolution does not necessarily guarantee the convergence of iterative algorithms. To solve the convergence problem of AMP-type algorithms in principle, this paper proposes a memory AMP (MAMP) under a sufficient statistic condition, named sufficient statistic MAMP (SS-MAMP). We show that the covariance matrices of SS-MAMP are L-banded and convergent. Given an arbitrary MAMP, we can construct an SS-MAMP by damping, which not only ensures the convergence of MAMP but also preserves the orthogonality of MAMP, i.e., its dynamics can be rigorously described by state evolution. As a byproduct, we prove that the Bayes-optimal orthogonal/vector AMP (BO-OAMP/VAMP) is an SS-MAMP. As a result, we reveal two interesting properties of BO-OAMP/VAMP for large systems: 1) the covariance matrices are L-banded and are convergent, and 2) damping and memory are useless (i.e., do not bring performance improvement). As an example, we construct a sufficient statistic Bayes-optimal MAMP (SS-BO-MAMP), which is Bayes optimal if its state evolution has a unique fixed point. In addition, the mean square error (MSE) of SS-BO-MAMP is not worse than the original BO-MAMP. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.

One of the fundamental assumptions in stochastic control of continuous time processes is that the dynamics of the underlying (diffusion) process is known. This is, however, usually obviously not fulfilled in practice. On the other hand, over the last decades, a rich theory for nonparametric estimation of the drift (and volatility) for continuous time processes has been developed. The aim of this paper is bringing together techniques from stochastic control with methods from statistics for stochastic processes to find a way to both learn the dynamics of the underlying process and control in a reasonable way at the same time. More precisely, we study a long-term average impulse control problem, a stochastic version of the classical Faustmann timber harvesting problem. One of the problems that immediately arises is an exploration-exploitation dilemma as is well known for problems in machine learning. We propose a way to deal with this issue by combining exploration and exploitation periods in a suitable way. Our main finding is that this construction can be based on the rates of convergence of estimators for the invariant density. Using this, we obtain that the average cumulated regret is of uniform order $O({T^{-1/3}})$.

The non-convexity of the artificial neural network (ANN) training landscape brings inherent optimization difficulties. While the traditional back-propagation stochastic gradient descent (SGD) algorithm and its variants are effective in certain cases, they can become stuck at spurious local minima and are sensitive to initializations and hyperparameters. Recent work has shown that the training of an ANN with ReLU activations can be reformulated as a convex program, bringing hope to globally optimizing interpretable ANNs. However, naively solving the convex training formulation has an exponential complexity, and even an approximation heuristic requires cubic time. In this work, we characterize the quality of this approximation and develop two efficient algorithms that train ANNs with global convergence guarantees. The first algorithm is based on the alternating direction method of multiplier (ADMM). It solves both the exact convex formulation and the approximate counterpart. Linear global convergence is achieved, and the initial several iterations often yield a solution with high prediction accuracy. When solving the approximate formulation, the per-iteration time complexity is quadratic. The second algorithm, based on the "sampled convex programs" theory, is simpler to implement. It solves unconstrained convex formulations and converges to an approximately globally optimal classifier. The non-convexity of the ANN training landscape exacerbates when adversarial training is considered. We apply the robust convex optimization theory to convex training and develop convex formulations that train ANNs robust to adversarial inputs. Our analysis explicitly focuses on one-hidden-layer fully connected ANNs, but can extend to more sophisticated architectures.

This paper focuses on a research problem of robotic controlled laser orientation to minimize errant overcutting of healthy tissue during the course of pathological tissue resection. Laser scalpels have been widely used in surgery to remove pathological tissue targets such as tumors or other lesions. However, different laser orientations can create various tissue ablation cavities, and incorrect incident angles can cause over-irradiation of healthy tissue that should not be ablated. This work aims to formulate an optimization problem to find the optimal laser orientation in order to minimize the possibility of excessive laser-induced tissue ablation. We first develop a 3D data-driven geometric model to predict the shape of the tissue cavity after a single laser ablation. Modelling the target and non-target tissue region by an obstacle boundary, the determination of an optimal orientation is converted to a collision-minimization problem. The goal of this optimization formulation is maintaining the ablated contour distance from the obstacle boundary, which is solved by Projected gradient descent. Simulation experiments were conducted and the results validated the proposed method with conditions of various obstacle shapes and different initial incident angles.

The Sliced-Wasserstein distance (SW) is being increasingly used in machine learning applications as an alternative to the Wasserstein distance and offers significant computational and statistical benefits. Since it is defined as an expectation over random projections, SW is commonly approximated by Monte Carlo. We adopt a new perspective to approximate SW by making use of the concentration of measure phenomenon: under mild assumptions, one-dimensional projections of a high-dimensional random vector are approximately Gaussian. Based on this observation, we develop a simple deterministic approximation for SW. Our method does not require sampling a number of random projections, and is therefore both accurate and easy to use compared to the usual Monte Carlo approximation. We derive nonasymptotical guarantees for our approach, and show that the approximation error goes to zero as the dimension increases, under a weak dependence condition on the data distribution. We validate our theoretical findings on synthetic datasets, and illustrate the proposed approximation on a generative modeling problem.

In this paper we analyze the Schwarz alternating method for unconstrained elliptic optimal control problems. We discuss the convergence properties of the method in the continuous case first and then apply the arguments to the finite difference discretization case. In both cases, we prove that the Schwarz alternating method is convergent if its counterpart for an elliptic equation is convergent. Meanwhile, the convergence rate of the method for the elliptic equation under the maximum norm also gives a uniform upper bound (with respect to the regularization parameter $\alpha$) of the convergence rate of the method for the optimal control problem under the maximum norm of proper error merit functions in the continuous case or vectors in the discrete case. Our numerical results corroborate our theoretical results and show that with $\alpha$ decreasing to zero, the method will converge faster. We also give some exposition of this phenomenon.

Determining the adsorption isotherms is an issue of significant importance in preparative chromatography. A modern technique for estimating adsorption isotherms is to solve an inverse problem so that the simulated batch separation coincides with actual experimental results. However, due to the ill-posedness, the high non-linearity, and the uncertainty quantification of the corresponding physical model, the existing deterministic inversion methods are usually inefficient in real-world applications. To overcome these difficulties and study the uncertainties of the adsorption-isotherm parameters, in this work, based on the Bayesian sampling framework, we propose a statistical approach for estimating the adsorption isotherms in various chromatography systems. Two modified Markov chain Monte Carlo algorithms are developed for a numerical realization of our statistical approach. Numerical experiments with both synthetic and real data are conducted and described to show the efficiency of the proposed new method.

Many-user MAC is an important model for understanding energy efficiency of massive random access in 5G and beyond. Introduced in Polyanskiy'2017 for the AWGN channel, subsequent works have provided improved bounds on the asymptotic minimum energy-per-bit required to achieve a target per-user error at a given user density and payload, going beyond the AWGN setting. The best known rigorous bounds use spatially coupled codes along with the optimal AMP algorithm. But these bounds are infeasible to compute beyond a few (around 10) bits of payload. In this paper, we provide new achievability bounds for the many-user AWGN and quasi-static Rayleigh fading MACs using the spatially coupled codebook design along with a scalar AMP algorithm. The obtained bounds are computable even up to 100 bits and outperform the previous ones at this payload.

This dissertation studies a fundamental open challenge in deep learning theory: why do deep networks generalize well even while being overparameterized, unregularized and fitting the training data to zero error? In the first part of the thesis, we will empirically study how training deep networks via stochastic gradient descent implicitly controls the networks' capacity. Subsequently, to show how this leads to better generalization, we will derive {\em data-dependent} {\em uniform-convergence-based} generalization bounds with improved dependencies on the parameter count. Uniform convergence has in fact been the most widely used tool in deep learning literature, thanks to its simplicity and generality. Given its popularity, in this thesis, we will also take a step back to identify the fundamental limits of uniform convergence as a tool to explain generalization. In particular, we will show that in some example overparameterized settings, {\em any} uniform convergence bound will provide only a vacuous generalization bound. With this realization in mind, in the last part of the thesis, we will change course and introduce an {\em empirical} technique to estimate generalization using unlabeled data. Our technique does not rely on any notion of uniform-convergece-based complexity and is remarkably precise. We will theoretically show why our technique enjoys such precision. We will conclude by discussing how future work could explore novel ways to incorporate distributional assumptions in generalization bounds (such as in the form of unlabeled data) and explore other tools to derive bounds, perhaps by modifying uniform convergence or by developing completely new tools altogether.

北京阿比特科技有限公司