亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is an urgent need to identify both short and long-term risks from newly emerging types of Artificial Intelligence (AI), as well as available risk management measures. In response, and to support global efforts in regulating AI and writing safety standards, we compile an extensive catalog of risk sources and risk management measures for general-purpose AI (GPAI) systems, complete with descriptions and supporting examples where relevant. This work involves identifying technical, operational, and societal risks across model development, training, and deployment stages, as well as surveying established and experimental methods for managing these risks. To the best of our knowledge, this paper is the first of its kind to provide extensive documentation of both GPAI risk sources and risk management measures that are descriptive, self-contained and neutral with respect to any existing regulatory framework. This work intends to help AI providers, standards experts, researchers, policymakers, and regulators in identifying and mitigating systemic risks from GPAI systems. For this reason, the catalog is released under a public domain license for ease of direct use by stakeholders in AI governance and standards.

相關內容

人工(gong)(gong)智(zhi)能雜(za)志AI(Artificial Intelligence)是目前公認的(de)(de)(de)(de)(de)發(fa)表該(gai)(gai)領域(yu)最新(xin)研究成果的(de)(de)(de)(de)(de)主(zhu)要國際(ji)論(lun)(lun)(lun)壇。該(gai)(gai)期刊歡(huan)迎有關(guan)AI廣泛方面(mian)的(de)(de)(de)(de)(de)論(lun)(lun)(lun)文(wen),這些論(lun)(lun)(lun)文(wen)構成了(le)整個(ge)(ge)領域(yu)的(de)(de)(de)(de)(de)進步(bu),也歡(huan)迎介(jie)紹(shao)人工(gong)(gong)智(zhi)能應(ying)用(yong)的(de)(de)(de)(de)(de)論(lun)(lun)(lun)文(wen),但重點應(ying)該(gai)(gai)放在新(xin)的(de)(de)(de)(de)(de)和(he)新(xin)穎(ying)的(de)(de)(de)(de)(de)人工(gong)(gong)智(zhi)能方法如何提(ti)高應(ying)用(yong)領域(yu)的(de)(de)(de)(de)(de)性能,而不是介(jie)紹(shao)傳(chuan)統人工(gong)(gong)智(zhi)能方法的(de)(de)(de)(de)(de)另一(yi)個(ge)(ge)應(ying)用(yong)。關(guan)于應(ying)用(yong)的(de)(de)(de)(de)(de)論(lun)(lun)(lun)文(wen)應(ying)該(gai)(gai)描述(shu)一(yi)個(ge)(ge)原則性的(de)(de)(de)(de)(de)解決方案(an),強調其新(xin)穎(ying)性,并(bing)對正在開發(fa)的(de)(de)(de)(de)(de)人工(gong)(gong)智(zhi)能技術(shu)進行深入的(de)(de)(de)(de)(de)評(ping)估(gu)。 官網地址:

Principal Component Analysis (PCA) is one of the most used tools for extracting low-dimensional representations of data, in particular for time series. Performances are known to strongly depend on the quality (amount of noise) and the quantity of data. We here investigate the impact of heterogeneities, often present in real data, on the reconstruction of low-dimensional trajectories and of their associated modes. We focus in particular on the effects of sample-to-sample fluctuations and of component-dependent temporal convolution and noise in the measurements. We derive analytical predictions for the error on the reconstructed trajectory and the confusion between the modes using the replica method in a high-dimensional setting, in which the number and the dimension of the data are comparable. We find in particular that sample-to-sample variability, is deleterious for the reconstruction of the signal trajectory, but beneficial for the inference of the modes, and that the fluctuations in the temporal convolution kernels prevent perfect recovery of the latent modes even for very weak measurement noise. Our predictions are corroborated by simulations with synthetic data for a variety of control parameters.

Objective: Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. Methods: Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we applied tuned characteristics exclusively from level-ground walking to personalize continuous-phase/task models of joint kinematics and impedance. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments. We then conducted a case study involving an above-knee amputee participant where a prosthetist iteratively tuned the prosthesis in a simulated clinical session involving walking and sit-stand transitions. Results: The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the tuned tasks and across untuned tasks (inclines). Conclusion: The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions. A case-study validated the CTI tuning method and demonstrated the efficiency necessary for powered knee-ankle prostheses to become clinically viable.

The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.

The rapid growth of Large Language Models (LLMs) has put forward the study of biases as a crucial field. It is important to assess the influence of different types of biases embedded in LLMs to ensure fair use in sensitive fields. Although there have been extensive works on bias assessment in English, such efforts are rare and scarce for a major language like Bangla. In this work, we examine two types of social biases in LLM generated outputs for Bangla language. Our main contributions in this work are: (1) bias studies on two different social biases for Bangla, (2) a curated dataset for bias measurement benchmarking and (3) testing two different probing techniques for bias detection in the context of Bangla. This is the first work of such kind involving bias assessment of LLMs for Bangla to the best of our knowledge. All our code and resources are publicly available for the progress of bias related research in Bangla NLP.

Despite their widespread use in determining system attitude, Micro-Electro-Mechanical Systems (MEMS) Attitude and Heading Reference Systems (AHRS) are limited by sensor measurement biases. This paper introduces a method called MAgnetometer and GYroscope Calibration (MAGYC), leveraging three-axis angular rate measurements from an angular rate gyroscope to estimate both the hard- and soft-iron biases of magnetometers as well as the bias of gyroscopes. We present two implementation methods of this approach based on batch and online incremental factor graphs. Our method imposes fewer restrictions on instrument movements required for calibration, eliminates the need for knowledge of the local magnetic field magnitude or instrument's attitude, and facilitates integration into factor graph algorithms for Smoothing and Mapping frameworks. We validate the proposed methods through numerical simulations and in-field experimental evaluations with a sensor onboard an underwater vehicle. By implementing the proposed method in field data of a seafloor mapping dive, the dead reckoning-based position estimation error of the underwater vehicle was reduced from 10% to 0.5% of the distance traveled.

Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios, particularly in tasks involving videos, high-resolution images, or lengthy image-text documents. In our work, we first conduct an empirical analysis of the long-context capabilities of VLMs using our augmented long-context multimodal datasets. Our findings reveal that directly applying the positional encoding mechanism used for textual tokens to visual tokens is suboptimal, and VLM performance degrades sharply when the position encoding exceeds the model's context window. To address this, we propose Variable Visual Position Encoding (V2PE), a novel positional encoding approach that employs variable and smaller increments for visual tokens, enabling more efficient management of long multimodal sequences. Our experiments demonstrate the effectiveness of V2PE to enhances VLMs' ability to effectively understand and reason over long multimodal contexts. We further integrate V2PE with our augmented long-context multimodal datasets to fine-tune the open-source VLM, InternVL2. The fine-tuned model achieves strong performance on both standard and long-context multimodal tasks. Notably, when the sequence length of the training dataset is increased to 256K tokens, the model is capable of processing multimodal sequences up to 1M tokens, highlighting its potential for real-world long-context applications.

Quantifying the uncertainty in the factual parametric knowledge of Large Language Models (LLMs), especially in a black-box setting, poses a significant challenge. Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty. Models might respond consistently to the origin query with a wrong answer, yet respond correctly to varied questions from different perspectives about the same query, and vice versa. In this paper, we propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction under the assumption that if a model is certain, it should consistently recall the answer to the original query across a diverse collection of questions about the same original query. We further implement an abstention policy to withhold responses when uncertainty is high. Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods. Additionally, it demonstrates that existing models often fail to consistently retrieve the correct answer to the same query under diverse varied questions even when knowing the correct answer.

Speech-to-Speech Translation (S2ST) refers to the conversion of speech in one language into semantically equivalent speech in another language, facilitating communication between speakers of different languages. Speech-to-Discrete Unit Translation (S2UT), a mainstream approach for end-to-end S2ST, addresses challenges such as error propagation across modules and slow inference speed often encountered in traditional cascade systems. However, as discrete units primarily capture content information, conventional S2UT methods fail to retain speaker-specific characteristics from the source. Our previous work, SC-S2UT, introduced a speaker adapter and a unit-to-mel structure, enabling the preservation of speaker information and non-autoregressive speech generation. Building on this foundation, this study proposes a self-supervised pretraining method to enrich the information extracted by both the speaker adapter and the unit-to-mel structure. Additionally, we investigate different feature fusion strategies to further improve the integration of speaker and content features. Experiments conducted on the CVSS-T dataset for ES-EN and FR-EN tasks demonstrate that our proposed method achieves a BLEU score improvement of 1.14 compared to SC-S2UT, along with significant enhancements in MOS and speaker similarity. Furthermore, our approach achieves translation quality comparable to traditional S2UT, with only a minimal increase of 0.04s per utterance in inference time, while maintaining high speaker similarity. These results validate the effectiveness of the proposed method.

Engaging in the deliberate generation of abnormal outputs from Large Language Models (LLMs) by attacking them is a novel human activity. This paper presents a thorough exposition of how and why people perform such attacks, defining LLM red-teaming based on extensive and diverse evidence. Using a formal qualitative methodology, we interviewed dozens of practitioners from a broad range of backgrounds, all contributors to this novel work of attempting to cause LLMs to fail. We focused on the research questions of defining LLM red teaming, uncovering the motivations and goals for performing the activity, and characterizing the strategies people use when attacking LLMs. Based on the data, LLM red teaming is defined as a limit-seeking, non-malicious, manual activity, which depends highly on a team-effort and an alchemist mindset. It is highly intrinsically motivated by curiosity, fun, and to some degrees by concerns for various harms of deploying LLMs. We identify a taxonomy of 12 strategies and 35 different techniques of attacking LLMs. These findings are presented as a comprehensive grounded theory of how and why people attack large language models: LLM red teaming.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司