亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Point clouds are naturally sparse, while image pixels are dense. The inconsistency limits feature fusion from both modalities for point-wise scene flow estimation. Previous methods rarely predict scene flow from the entire point clouds of the scene with one-time inference due to the memory inefficiency and heavy overhead from distance calculation and sorting involved in commonly used farthest point sampling, KNN, and ball query algorithms for local feature aggregation. To mitigate these issues in scene flow learning, we regularize raw points to a dense format by storing 3D coordinates in 2D grids. Unlike the sampling operation commonly used in existing works, the dense 2D representation 1) preserves most points in the given scene, 2) brings in a significant boost of efficiency, and 3) eliminates the density gap between points and pixels, allowing us to perform effective feature fusion. We also present a novel warping projection technique to alleviate the information loss problem resulting from the fact that multiple points could be mapped into one grid during projection when computing cost volume. Sufficient experiments demonstrate the efficiency and effectiveness of our method, outperforming the prior-arts on the FlyingThings3D and KITTI dataset.

相關內容

根據激(ji)光(guang)測量(liang)原(yuan)理(li)(li)得(de)到的點云(yun)(yun),包(bao)括三(san)維坐(zuo)(zuo)標(biao)(XYZ)和(he)(he)激(ji)光(guang)反(fan)射(she)強(qiang)度(Intensity)。 根據攝(she)影(ying)測量(liang)原(yuan)理(li)(li)得(de)到的點云(yun)(yun),包(bao)括三(san)維坐(zuo)(zuo)標(biao)(XYZ)和(he)(he)顏(yan)色信息(xi)(RGB)。 結合激(ji)光(guang)測量(liang)和(he)(he)攝(she)影(ying)測量(liang)原(yuan)理(li)(li)得(de)到點云(yun)(yun),包(bao)括三(san)維坐(zuo)(zuo)標(biao)(XYZ)、激(ji)光(guang)反(fan)射(she)強(qiang)度(Intensity)和(he)(he)顏(yan)色信息(xi)(RGB)。 在獲取(qu)物體(ti)表面每個(ge)采樣點的空間(jian)坐(zuo)(zuo)標(biao)后,得(de)到的是一(yi)個(ge)點的集合,稱之為(wei)“點云(yun)(yun)”(Point Cloud)

Diverse explainability methods of graph neural networks (GNN) have recently been developed to highlight the edges and nodes in the graph that contribute the most to the model predictions. However, it is not clear yet how to evaluate the correctness of those explanations, whether it is from a human or a model perspective. One unaddressed bottleneck in the current evaluation procedure is the problem of out-of-distribution explanations, whose distribution differs from those of the training data. This important issue affects existing evaluation metrics such as the popular faithfulness or fidelity score. In this paper, we show the limitations of faithfulness metrics. We propose GInX-Eval (Graph In-distribution eXplanation Evaluation), an evaluation procedure of graph explanations that overcomes the pitfalls of faithfulness and offers new insights on explainability methods. Using a retraining strategy, the GInX score measures how informative removed edges are for the model and the EdgeRank score evaluates if explanatory edges are correctly ordered by their importance. GInX-Eval verifies if ground-truth explanations are instructive to the GNN model. In addition, it shows that many popular methods, including gradient-based methods, produce explanations that are not better than a random designation of edges as important subgraphs, challenging the findings of current works in the area. Results with GInX-Eval are consistent across multiple datasets and align with human evaluation.

The widespread integration of Internet of Things (IoT) devices across all facets of life has ushered in an era of interconnectedness, creating new avenues for cybersecurity challenges and underscoring the need for robust intrusion detection systems. However, traditional security systems are designed with a closed-world perspective and often face challenges in dealing with the ever-evolving threat landscape, where new and unfamiliar attacks are constantly emerging. In this paper, we introduce a framework aimed at mitigating the open set recognition (OSR) problem in the realm of Network Intrusion Detection Systems (NIDS) tailored for IoT environments. Our framework capitalizes on image-based representations of packet-level data, extracting spatial and temporal patterns from network traffic. Additionally, we integrate stacking and sub-clustering techniques, enabling the identification of unknown attacks by effectively modeling the complex and diverse nature of benign behavior. The empirical results prominently underscore the framework's efficacy, boasting an impressive 88\% detection rate for previously unseen attacks when compared against existing approaches and recent advancements. Future work will perform extensive experimentation across various openness levels and attack scenarios, further strengthening the adaptability and performance of our proposed solution in safeguarding IoT environments.

Residual neural networks are widely used in computer vision tasks. They enable the construction of deeper and more accurate models by mitigating the vanishing gradient problem. Their main innovation is the residual block which allows the output of one layer to bypass one or more intermediate layers and be added to the output of a later layer. Their complex structure and the buffering required by the residual block make them difficult to implement on resource-constrained platforms. We present a novel design flow for implementing deep learning models for field programmable gate arrays optimized for ResNets, using a strategy to reduce their buffering overhead to obtain a resource-efficient implementation of the residual layer. Our high-level synthesis (HLS)-based flow encompasses a thorough set of design principles and optimization strategies, exploiting in novel ways standard techniques such as temporal reuse and loop merging to efficiently map ResNet models, and potentially other skip connection-based NN architectures, into FPGA. The models are quantized to 8-bit integers for both weights and activations, 16-bit for biases, and 32-bit for accumulations. The experimental results are obtained on the CIFAR-10 dataset using ResNet8 and ResNet20 implemented with Xilinx FPGAs using HLS on the Ultra96-V2 and Kria KV260 boards. Compared to the state-of-the-art on the Kria KV260 board, our ResNet20 implementation achieves 2.88X speedup with 0.5% higher accuracy of 91.3%, while ResNet8 accuracy improves by 2.8% to 88.7%. The throughputs of ResNet8 and ResNet20 are 12971 FPS and 3254 FPS on the Ultra96 board, and 30153 FPS and 7601 FPS on the Kria KV26, respectively. They Pareto-dominate state-of-the-art solutions concerning accuracy, throughput, and energy.

3D perception based on the representations learned from multi-camera bird's-eye-view (BEV) is trending as cameras are cost-effective for mass production in autonomous driving industry. However, there exists a distinct performance gap between multi-camera BEV and LiDAR based 3D object detection. One key reason is that LiDAR captures accurate depth and other geometry measurements, while it is notoriously challenging to infer such 3D information from merely image input. In this work, we propose to boost the representation learning of a multi-camera BEV based student detector by training it to imitate the features of a well-trained LiDAR based teacher detector. We propose effective balancing strategy to enforce the student to focus on learning the crucial features from the teacher, and generalize knowledge transfer to multi-scale layers with temporal fusion. We conduct extensive evaluations on multiple representative models of multi-camera BEV. Experiments reveal that our approach renders significant improvement over the student models, leading to the state-of-the-art performance on the popular benchmark nuScenes.

Recently, the RGB images and point clouds fusion methods have been proposed to jointly estimate 2D optical flow and 3D scene flow. However, as both conventional RGB cameras and LiDAR sensors adopt a frame-based data acquisition mechanism, their performance is limited by the fixed low sampling rates, especially in highly-dynamic scenes. By contrast, the event camera can asynchronously capture the intensity changes with a very high temporal resolution, providing complementary dynamic information of the observed scenes. In this paper, we incorporate RGB images, Point clouds and Events for joint optical flow and scene flow estimation with our proposed multi-stage multimodal fusion model, RPEFlow. First, we present an attention fusion module with a cross-attention mechanism to implicitly explore the internal cross-modal correlation for 2D and 3D branches, respectively. Second, we introduce a mutual information regularization term to explicitly model the complementary information of three modalities for effective multimodal feature learning. We also contribute a new synthetic dataset to advocate further research. Experiments on both synthetic and real datasets show that our model outperforms the existing state-of-the-art by a wide margin. Code and dataset is available at //npucvr.github.io/RPEFlow.

Diffusion probabilistic models (DPMs) have demonstrated a very promising ability in high-resolution image synthesis. However, sampling from a pre-trained DPM is time-consuming due to the multiple evaluations of the denoising network, making it more and more important to accelerate the sampling of DPMs. Despite recent progress in designing fast samplers, existing methods still cannot generate satisfying images in many applications where fewer steps (e.g., $<$10) are favored. In this paper, we develop a unified corrector (UniC) that can be applied after any existing DPM sampler to increase the order of accuracy without extra model evaluations, and derive a unified predictor (UniP) that supports arbitrary order as a byproduct. Combining UniP and UniC, we propose a unified predictor-corrector framework called UniPC for the fast sampling of DPMs, which has a unified analytical form for any order and can significantly improve the sampling quality over previous methods, especially in extremely few steps. We evaluate our methods through extensive experiments including both unconditional and conditional sampling using pixel-space and latent-space DPMs. Our UniPC can achieve 3.87 FID on CIFAR10 (unconditional) and 7.51 FID on ImageNet 256$\times$256 (conditional) with only 10 function evaluations. Code is available at //github.com/wl-zhao/UniPC.

Change detection in satellite imagery seeks to find occurrences of targeted changes in a given scene taken at different instants. This task has several applications ranging from land-cover mapping, to anthropogenic activity monitory as well as climate change and natural hazard damage assessment. However, change detection is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we devise a novel algorithm for change detection based on active learning. The proposed method is based on a question and answer model that probes an oracle (user) about the relevance of changes only on a small set of critical images (referred to as virtual exemplars), and according to oracle's responses updates deep neural network (DNN) classifiers. The main contribution resides in a novel adversarial model that allows learning the most representative, diverse and uncertain virtual exemplars (as inverted preimages of the trained DNNs) that challenge (the most) the trained DNNs, and this leads to a better re-estimate of these networks in the subsequent iterations of active learning. Experiments show the out-performance of our proposed deep-net inversion against the related work.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司