Detecting Personal Protective Equipment in images and video streams is a relevant problem in ensuring the safety of construction workers. In this contribution, an architecture enabling live image recognition of such equipment is proposed. The solution is deployable in two settings -- edge-cloud and edge-only. The system was tested on an active construction site, as a part of a larger scenario, within the scope of the ASSIST-IoT H2020 project. To determine the feasibility of the edge-only variant, a model for counting people wearing safety helmets was developed using the YOLOX method. It was found that an edge-only deployment is possible for this use case, given the hardware infrastructure available on site. In the preliminary evaluation, several important observations were made, that are crucial to the further development and deployment of the system. Future work will include an in-depth investigation of performance aspects of the two architecture variants.
Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models. Nevertheless, the limited coverage of a single edge server results in an insufficient number of participated client nodes, which may impair the learning performance. In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes. By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning. We detail the training algorithm for SD-FEEL with three main steps, including local model update, intra-cluster, and inter-cluster model aggregations. The convergence of this algorithm is proved on non-independent and identically distributed (non-IID) data, which also helps to reveal the effects of key parameters on the training efficiency and provides practical design guidelines. Meanwhile, the heterogeneity of edge devices may cause the straggler effect and deteriorate the convergence speed of SD-FEEL. To resolve this issue, we propose an asynchronous training algorithm with a staleness-aware aggregation scheme for SD-FEEL, of which, the convergence performance is also analyzed. The simulation results demonstrate the effectiveness and efficiency of the proposed algorithms for SD-FEEL and corroborate our analysis.
We propose FedScore, a privacy-preserving federated learning framework for scoring system generation across multiple sites to facilitate cross-institutional collaborations. The FedScore framework includes five modules: federated variable ranking, federated variable transformation, federated score derivation, federated model selection and federated model evaluation. To illustrate usage and assess FedScore's performance, we built a hypothetical global scoring system for mortality prediction within 30 days after a visit to an emergency department using 10 simulated sites divided from a tertiary hospital in Singapore. We employed a pre-existing score generator to construct 10 local scoring systems independently at each site and we also developed a scoring system using centralized data for comparison. We compared the acquired FedScore model's performance with that of other scoring models using the receiver operating characteristic (ROC) analysis. The FedScore model achieved an average area under the curve (AUC) value of 0.763 across all sites, with a standard deviation (SD) of 0.020. We also calculated the average AUC values and SDs for each local model, and the FedScore model showed promising accuracy and stability with a high average AUC value which was closest to the one of the pooled model and SD which was lower than that of most local models. This study demonstrates that FedScore is a privacy-preserving scoring system generator with potentially good generalizability.
Automating the process of manipulating and delivering sutures during robotic surgery is a prominent problem at the frontier of surgical robotics, as automating this task can significantly reduce surgeons' fatigue during tele-operated surgery and allow them to spend more time addressing higher-level clinical decision making. Accomplishing autonomous suturing and suture manipulation in the real world requires accurate suture thread localization and reconstruction, the process of creating a 3D shape representation of suture thread from 2D stereo camera surgical image pairs. This is a very challenging problem due to how limited pixel information is available for the threads, as well as their sensitivity to lighting and specular reflection. We present a suture thread reconstruction work that uses reliable keypoints and a Minimum Variation Spline (MVS) smoothing optimization to construct a 3D centerline from a segmented surgical image pair. This method is comparable to previous suture thread reconstruction works, with the possible benefit of increased accuracy of grasping point estimation. Our code and datasets will be available at: //github.com/ucsdarclab/thread-reconstruction.
We present WEARDA, the open source WEARable sensor Data Acquisition software package. WEARDA facilitates the acquisition of human activity data with smartwatches and is primarily aimed at researchers who require transparency, full control, and access to raw sensor data. It provides functionality to simultaneously record raw data from four sensors -- tri-axis accelerometer, tri-axis gyroscope, barometer, and GPS -- which should enable researchers to, for example, estimate energy expenditure and mine movement trajectories. A Samsung smartwatch running the Tizen OS was chosen because of 1) the required functionalities of the smartwatch software API, 2) the availability of software development tools and accessible documentation, 3) having the required sensors, and 4) the requirements on case design for acceptance by the target user group. WEARDA addresses five practical challenges concerning preparation, measurement, logistics, privacy preservation, and reproducibility to ensure efficient and errorless data collection. The software package was initially created for the project ``Dementia back at the heart of the community'', and has been successfully used in that context.
Exploration of unknown space with an autonomous mobile robot is a well-studied problem. In this work we broaden the scope of exploration, moving beyond the pure geometric goal of uncovering as much free space as possible. We believe that for many practical applications, exploration should be contextualised with semantic and object-level understanding of the environment for task-specific exploration. Here, we study the task of both finding specific objects in unknown space as well as reconstructing them to a target level of detail. We therefore extend our environment reconstruction to not only consist of a background map, but also object-level and semantically fused submaps. Importantly, we adapt our previous objective function of uncovering as much free space as possible in as little time as possible with two additional elements: first, we require a maximum observation distance of background surfaces to ensure target objects are not missed by image-based detectors because they are too small to be detected. Second, we require an even smaller maximum distance to the found objects in order to reconstruct them with the desired accuracy. We further created a Micro Aerial Vehicle (MAV) semantic exploration simulator based on Habitat in order to quantitatively demonstrate how our framework can be used to efficiently find specific objects as part of exploration. Finally, we showcase this capability can be deployed in real-world scenes involving our drone equipped with an Intel RealSense D455 RGB-D camera.
DL frameworks are the basis of constructing all DL programs and models, and thus their bugs could lead to the unexpected behaviors of any DL program or model relying on them. Such a wide effect demonstrates the necessity and importance of guaranteeing DL frameworks' quality. Understanding the characteristics of DL framework bugs is a fundamental step for this quality assurance task, facilitating designing effective bug detection and debugging approaches. Hence, in this work we conduct the most large-scale study on 1,000 bugs from four popular and diverse DL frameworks (i.e., TensorFlow, PyTorch, MXNet, and DL4J). By analyzing the root causes and symptoms of DL framework bugs associated with 5 components decomposed from DL frameworks, as well as measuring test coverage achieved by three state-of-the-art testing techniques, we obtain 12 major findings for the comprehensive understanding of DL framework bugs and the current status of existing DL framework testing practice, and then provide a series of actionable guidelines for better DL framework bug detection and debugging. Finally, based on the guidelines, we design and implement a prototype DL-framework testing tool, called TenFuzz, which is evaluated to be effective and finds 3 unknown bugs on the latest TensorFlow framework in a preliminary study, indicating the significance of our guidelines.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.