亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Temporal logics stands for a widely adopted family of formalisms for the verification of computational devices, enriching propositional logics by operators predicating on the step-wise behaviour of a system. Its quantified extensions allow to reason on the properties of the individual components of the system at hand. The expressiveness of the resulting logics poses problems in correctly identifying a semantics that exploit its features without resorting to the imposition of restrictions on the acceptable behaviours. In this paper we address this issue by means of counterpart models and relational presheaves.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Changes in the number of publications in a certain field might reflect the dynamic of scientific progress in this field, since an increase in the number of publications can be interpreted as an increase in the field-specific knowledge. In this paper, we present a methodological approach to analyse the dynamics of science on lower aggregation levels, i.e., the level of research fields. Our trend analysis approach is able to uncover very recent trends, and the methods used to study the trends are simple to understand for the possible recipients of the results. In order to demonstrate the trend analysis approach, we focused in this study on the annual number of publications (and patents) in chemistry (and related areas) between 2014 and 2020 identifying those fields in chemistry with the highest dynamics (largest rates of change in publication counts). The study is based on the mono-disciplinary literature database CAplus. Our results reveal that the number of publications in the CAplus database is increasing since many years. Research regarding optical phenomena and electrochemical technologies was found to be among the emerging topics in recent years.

Graph neural networks (GNNs) are deep learning architectures for machine learning problems on graphs. It has recently been shown that the expressiveness of GNNs can be characterised precisely by the combinatorial Weisfeiler-Leman algorithms and by finite variable counting logics. The correspondence has even led to new, higher-order GNNs corresponding to the WL algorithm in higher dimensions. The purpose of this paper is to explain these descriptive characterisations of GNNs.

A non-commutative, non-associative weakening of Girard's linear logic is developed for multiplicative and additive connectives. Additional assumptions capture the logic of quantic measurements.

Semantic change detection (SCD) extends the multi-class change detection (MCD) task to provide not only the change locations but also the detailed land-cover/land-use (LCLU) categories before and after the observation intervals. This fine-grained semantic change information is very useful in many applications. Recent studies indicate that the SCD can be modeled through a triple-branch Convolutional Neural Network (CNN), which contains two temporal branches and a change branch. However, in this architecture, the communications between the temporal branches and the change branch are insufficient. To overcome the limitations in existing methods, we propose a novel CNN architecture for the SCD, where the semantic temporal features are merged in a deep CD unit. Furthermore, we elaborate on this architecture to reason the bi-temporal semantic correlations. The resulting Bi-temporal Semantic Reasoning Network (Bi-SRNet) contains two types of semantic reasoning blocks to reason both single-temporal and cross-temporal semantic correlations, as well as a novel loss function to improve the semantic consistency of change detection results. Experimental results on a benchmark dataset show that the proposed architecture obtains significant accuracy improvements over the existing approaches, while the added designs in the Bi-SRNet further improves the segmentation of both semantic categories and the changed areas. The codes in this paper are accessible at: github.com/ggsDing/Bi-SRNet.

Travel time is a crucial measure in transportation. Accurate travel time prediction is also fundamental for operation and advanced information systems. A variety of solutions exist for short-term travel time predictions such as solutions that utilize real-time GPS data and optimization methods to track the path of a vehicle. However, reliable long-term predictions remain challenging. We show in this paper the applicability and usefulness of travel time i.e. delivery time prediction for postal services. We investigate several methods such as linear regression models and tree based ensembles such as random forest, bagging, and boosting, that allow to predict delivery time by conducting extensive experiments and considering many usability scenarios. Results reveal that travel time prediction can help mitigate high delays in postal services. We show that some boosting algorithms, such as light gradient boosting and catboost, have a higher performance in terms of accuracy and runtime efficiency than other baselines such as linear regression models, bagging regressor and random forest.

Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers.

Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent.

A semantic feature extraction method for multitemporal high resolution aerial image registration is proposed in this paper. These features encode properties or information about temporally invariant objects such as roads and help deal with issues such as changing foliage in image registration, which classical handcrafted features are unable to address. These features are extracted from a semantic segmentation network and have shown good robustness and accuracy in registering aerial images across years and seasons in the experiments.

The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks.

Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation to eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation.

北京阿比特科技有限公司