亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perspective-$n$-Point (P$n$P) stands as a fundamental algorithm for pose estimation in various applications. In this paper, we present a new approach to the P$n$P problem with relaxed constraints, eliminating the need for precise 3D coordinates or complete calibration data. We refer to it as AP$n$P due to its ability to handle unknown anisotropic scaling factors of 3D coordinates or alternatively two distinct focal lengths in addition to the conventional rigid pose. Through algebraic manipulations and a novel parametrization, both cases are brought into similar forms that distinguish themselves primarily by the order of a rotation and an anisotropic scaling operation. AP$n$P furthermore brings down both cases to an identical polynomial problem, which is solved using the Gr\"obner basis approach. Experimental results on both simulated and real datasets demonstrate the effectiveness of AP$n$P, providing a more flexible and practical solution to several pose estimation tasks. Code: //github.com/goldoak/APnP.

相關內容

Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.

A Magnetic field Aided Inertial Navigation System (MAINS) for indoor navigation is proposed in this paper. MAINS leverages an array of magnetometers to measure spatial variations in the magnetic field, which are then used to estimate the displacement and orientation changes of the system, thereby aiding the inertial navigation system (INS). Experiments show that MAINS significantly outperforms the stand-alone INS, demonstrating a remarkable two orders of magnitude reduction in position error. Furthermore, when compared to the state-of-the-art magnetic-field-aided navigation approach, the proposed method exhibits slightly improved horizontal position accuracy. On the other hand, it has noticeably larger vertical error on datasets with large magnetic field variations. However, one of the main advantages of MAINS compared to the state-of-the-art is that it enables flexible sensor configurations. The experimental results show that the position error after 2 minutes of navigation in most cases is less than 3 meters when using an array of 30 magnetometers. Thus, the proposed navigation solution has the potential to solve one of the key challenges faced with current magnetic-field simultaneous localization and mapping (SLAM) solutions: the very limited allowable length of the exploration phase during which unvisited areas are mapped.

This paper proposes a novel direct Audio-Visual Speech to Audio-Visual Speech Translation (AV2AV) framework, where the input and output of the system are multimodal (i.e., audio and visual speech). With the proposed AV2AV, two key advantages can be brought: 1) We can perform real-like conversations with individuals worldwide in a virtual meeting by utilizing our own primary languages. In contrast to Speech-to-Speech Translation (A2A), which solely translates between audio modalities, the proposed AV2AV directly translates between audio-visual speech. This capability enhances the dialogue experience by presenting synchronized lip movements along with the translated speech. 2) We can improve the robustness of the spoken language translation system. By employing the complementary information of audio-visual speech, the system can effectively translate spoken language even in the presence of acoustic noise, showcasing robust performance. To mitigate the problem of the absence of a parallel AV2AV translation dataset, we propose to train our spoken language translation system with the audio-only dataset of A2A. This is done by learning unified audio-visual speech representations through self-supervised learning in advance to train the translation system. Moreover, we propose an AV-Renderer that can generate raw audio and video in parallel. It is designed with zero-shot speaker modeling, thus the speaker in source audio-visual speech can be maintained at the target translated audio-visual speech. The effectiveness of AV2AV is evaluated with extensive experiments in a many-to-many language translation setting. The demo page is available on //choijeongsoo.github.io/av2av.

An essential part of monitoring machine learning models in production is measuring input and output data drift. In this paper, we present a system for measuring distributional shifts in natural language data and highlight and investigate the potential advantage of using large language models (LLMs) for this problem. Recent advancements in LLMs and their successful adoption in different domains indicate their effectiveness in capturing semantic relationships for solving various natural language processing problems. The power of LLMs comes largely from the encodings (embeddings) generated in the hidden layers of the corresponding neural network. First we propose a clustering-based algorithm for measuring distributional shifts in text data by exploiting such embeddings. Then we study the effectiveness of our approach when applied to text embeddings generated by both LLMs and classical embedding algorithms. Our experiments show that general-purpose LLM-based embeddings provide a high sensitivity to data drift compared to other embedding methods. We propose drift sensitivity as an important evaluation metric to consider when comparing language models. Finally, we present insights and lessons learned from deploying our framework as part of the Fiddler ML Monitoring platform over a period of 18 months.

Risk-sensitive reinforcement learning (RL) aims to optimize policies that balance the expected reward and risk. In this paper, we present a novel risk-sensitive RL framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations, enriched by human feedback. These new formulations provide a principled way to guarantee safety in each decision making step throughout the control process. Moreover, integrating human feedback into risk-sensitive RL framework bridges the gap between algorithmic decision-making and human participation, allowing us to also guarantee safety for human-in-the-loop systems. We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis. Furthermore, we establish a matching lower bound to corroborate the optimality of our algorithms in a linear context.

Algorithmic paradigms such as divide-and-conquer (D&C) are proposed to guide developers in designing efficient algorithms, but it can still be difficult to apply algorithmic paradigms to practical tasks. To ease the usage of paradigms, many research efforts have been devoted to the automatic application of algorithmic paradigms. However, most existing approaches to this problem rely on syntax-based program transformations and thus put significant restrictions on the original program. In this paper, we study the automatic application of D&C and several similar paradigms, denoted as D&C-like algorithmic paradigms, and aim to remove the restrictions from syntax-based transformations. To achieve this goal, we propose an efficient synthesizer, named AutoLifter, which does not depend on syntax-based transformations. Specifically, the main challenge of applying algorithmic paradigms is from the large scale of the synthesized programs, and AutoLifter addresses this challenge by applying two novel decomposition methods that do not depend on the syntax of the input program, component elimination and variable elimination, to soundly divide the whole problem into simpler subtasks, each synthesizing a sub-program of the final program and being tractable with existing synthesizers. We evaluate AutoLifter on 96 programming tasks related to 6 different algorithmic paradigms. AutoLifter solves 82/96 tasks with an average time cost of 20.17 seconds, significantly outperforming existing approaches.

In this paper we tackle the problem of learning Structure-from-Motion (SfM) through the use of graph attention networks. SfM is a classic computer vision problem that is solved though iterative minimization of reprojection errors, referred to as Bundle Adjustment (BA), starting from a good initialization. In order to obtain a good enough initialization to BA, conventional methods rely on a sequence of sub-problems (such as pairwise pose estimation, pose averaging or triangulation) which provides an initial solution that can then be refined using BA. In this work we replace these sub-problems by learning a model that takes as input the 2D keypoints detected across multiple views, and outputs the corresponding camera poses and 3D keypoint coordinates. Our model takes advantage of graph neural networks to learn SfM-specific primitives, and we show that it can be used for fast inference of the reconstruction for new and unseen sequences. The experimental results show that the proposed model outperforms competing learning-based methods, and challenges COLMAP while having lower runtime.

Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops (CDAW) Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We use LASCO C2 data in the period between January 1996 and December 2020 to train, validate and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep learning models, including ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations.

In this paper, we consider classes of decision tables with many-valued decisions closed relative to removal of attributes (columns) and changing sets of decisions assigned to rows. For tables from an arbitrary closed class, we study a function $\mathcal{H}^{\infty}_{\psi ,A}(n)$ that characterizes the dependence in the worst case of the minimum complexity of deterministic decision trees on the minimum complexity of nondeterministic decision trees. Note that nondeterministic decision trees for a decision table can be interpreted as a way to represent an arbitrary system of true decision rules for this table that cover all rows. We indicate the condition for the function $\mathcal{H}^{\infty}_{\psi ,A}(n)$ to be defined everywhere. If this function is everywhere defined, then it is either bounded from above by a constant or is greater than or equal to $n$ for infinitely many $n$. In particular, for any nondecreasing function $\varphi$ such that $\varphi (n)\geq n$ and $\varphi (0)=0$, the function $\mathcal{H}^{\infty}_{\psi ,A}(n)$ can grow between $\varphi (n)$ and $\varphi (n)+n$. We indicate also conditions for the function $\mathcal{H}^{\infty}_{\psi,A}(n)$ to be bounded from above by a polynomial on $n$.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

北京阿比特科技有限公司